During this lecture we have seen that it is of interest to estimate function to characterize the studied field. Then, it is important to calculate directly. In this exercise we will introduce the Probability Distribution Multiple Scaling technique which allows us to estimation the co-dimension function.
Question
Using the given data:
Write a script to estimate the singularities for each resolution
Write a script which calculates the probability that the field exceed the values
According the above equation write a script to calculate the function
function [data_res_bas] = UpScale(data,iterations)
data_res_bas=[];
defactor = 2;
step = defactor^(iterations-1);
newlen=floor(length(data)/step);
data_res_bas=zeros(1,newlen);
for i = 1:newlen
data_res_bas(i) = sum(data((i-1)*step+1:i*step))./step;
end
endfunction
1
function [p]=ProbaSup(data,threshold)
2
nb_sup=0;
3
nb_tot=length(data);
4
for i=1:length(data)
5
if data(i)>=threshold
6
nb_sup=nb_sup+1;
7
end
8
end
9
p=nb_sup/nb_tot;
10
11
endfunction
12
function [p]=ProbaSup(data,threshold)
nb_sup=0;
nb_tot=length(data);
for i=1:length(data)
if data(i)>=threshold
nb_sup=nb_sup+1;
end
end
p=nb_sup/nb_tot;
endfunction
1
function [c_gamma,y1,x1] = PDMS(data,gama,lambdas,rng)