Asymptotic distributions of the maximum
Starting from
on can define the law of maximum
as:

If there exist a constants
and a non-degenerate distribution
such as:

Then
is define as:
![G_{\mu, \sigma, \xi}(x) = \left\{ \begin{array}{ll} exp\{ - [1 + \xi(\frac{x - \mu}{\sigma} )]_{+}^{1/\xi} \} \quad if \quad \xi \neq 0\\ exp\{ - exp[ (- \frac{x - \mu}{\sigma} )_{+}] \} \quad if \quad \xi = 0 \end{array} \right. Where \quad x_+= max(0,x)](../res/eq24.png)
Where
are respectively the parameters of: location, scale and the shape of the model. Replacing in
the variable
by
we obtain the standard shape of the distribution of the extreme values (GEV :Generalized Extreme Value):
![G_{\mu, \sigma, \xi}(x) = \left\{ \begin{array}{ll} exp\{ - [1 + \xi x]_{+}^{1/\xi} \} \quad if \quad \xi \neq 0\\ exp\{ - exp[ (-x )_{+}] \} \quad if \quad \xi = 0 \end{array} \right.](../res/eq25.png)
We say that
is in the attraction domain of:
Gumbel if
Fréchet if
Weibull if
