Cascade phenomenology

α-model

As we have seen in the previous exercise, the β-model is used to characterize the occurrence of a given field. However, in order to a have a complete characterization it is better to have the occurrence and the intensity of this field. As it has shown in this lecture, the α-model allows us to curry out this can of analysis.

Question

  • 1 - According to the given elements in this lecture, give the expression of the singularities after n steps.

  • 2 - What can be expect if we tend

  • 3 - Generate different field with different values of the parameter and comment the obtained results.

Solution
  • 1 - After n steps : with

  • 2 - When we obtain the β-model.

Different steps of field generation using α-model cascade with C = 0.2 and α = 1.1
Different steps of field generation using α-model cascade with C = 0.8 and α = 1.7
1
# -*- coding: utf-8 -*-
2
"""
3
@author: yacine.mezemate
4
"""
5
import scipy as sp
6
from numpy import*
7
8
import matplotlib.pyplot as plt
9
from mpl_toolkits import mplot3d
10
11
######################## AlphaModel Function ##################################
12
def AlphaModelCascade(alpha, C, Lambda, nsteps, dim):
13
    alphaPrim = 1/(1-(1/alpha))
14
    GammaPlus = C/alpha
15
    GammaMinus = C/alphaPrim
16
    
17
    if dim ==1:
18
        
19
        resolution = sp.power(Lambda,nsteps)
20
        data = sp.ones((resolution))
21
        
22
        for n in range(nsteps):
23
            
24
            LambdaMu = sp.power(Lambda,n+1)
25
            Mu = random.uniform(0,1,LambdaMu)
26
            Mu = Mu / sp.mean(Mu)
27
            RangeList = range(0, resolution+1, resolution/LambdaMu)
28
            
29
            for i in range(len(RangeList)-1):
30
                
31
                rangeI = range(RangeList[i], RangeList[i+1])
32
                
33
                if Mu[i] > sp.power(LambdaMu, GammaPlus):
34
                    
35
                    data[rangeI]= Mu[i]*data[rangeI]
36
                
37
                elif Mu[i] < sp.power(LambdaMu, GammaMinus):
38
                    
39
                    data[rangeI] = Mu[i]*data[rangeI]
40
            data = data        
41
            
42
            # Plot
43
            if n % 2:            
44
                plt.subplot(nsteps,1,n)
45
                plt.plot(data)
46
                plt.title("Step number:" + str(n))
47
                frame = plt.gca()
48
                frame.axes.get_xaxis().set_ticks([])
49
                frame.axes.get_yaxis().set_ticks([])
50
            
51
                
52
    if dim == 2:
53
        
54
        resolution = sp.power(Lambda,nsteps)
55
        data = sp.ones((resolution, resolution))
56
57
        for n in range(nsteps):
58
            
59
            LambdaMu = sp.power(Lambda,n+1)
60
            Mu = random.uniform(0,1,LambdaMu)
61
            Mu = Mu / sp.mean(Mu)
62
            RangeList = range(0, resolution+1, resolution/LambdaMu)
63
            
64
            for i in range(len(RangeList)-1):
65
                
66
                for j in range(len(RangeList)-1):
67
                    
68
                    rangeI = range(RangeList[i], RangeList[i+1])
69
                    rangeJ = range(RangeList[j], RangeList[j+1])
70
                    
71
                    if Mu[i] > sp.power(LambdaMu, GammaPlus):
72
                        
73
                        data[rangeI,rangeJ] =  Mu[i]*data[rangeI,rangeJ]
74
                        
75
                    elif Mu[i] < sp.power(LambdaMu, GammaMinus):
76
                        data[rangeI,rangeJ] =  Mu[i]*data[rangeI,rangeJ]
77
78
    return data
79
###############################################################################
80
81
82
############################# Parameters ######################################
83
alpha = 1.7
84
C = 0.8
85
nsteps = 10
86
Lambda = 2
87
dim = 1
88
89
############################# Cascade #########################################    
90
dataSim = AlphaModelCascade(alpha, C, Lambda, nsteps, dim)
91
92
PreviousPreviousNextNext
HomepageHomepagePrintPrintCreated with Scenari (new window)