

Beyond scalar modelling of multifractal precipitation and wind fields

Daniel Schertzer Hydrology, Meteorology & Complexity (HM&Co) Ecole des Ponts ParisTech

Ra2DW Kickoff 5 February 2024

Millenium problem of turbulence !

DPSF 15:00/1 **50DX E** +100.0 mm/ł 25.1 mm/h 6.3 mm/h 1.6 mm/h 0.4 mm/h 0.1 mm/h Pdf File: DP 50km 1 Clutter Filter: IIRDoppler Time sampling:4096 1200 Hz PRF 50 km Range: Resolution: 0.250 km/p SRI Alg type: SRI H: 1.0 km Data: Radar Data Rainbow® Selex ES GmbH

Art piece 'Windswept' (Ch. Sowers, 2012): 612 freely rotating wind direction indicators to help a large public to understand the complexity of environment near the Earth surface Polarimetric radar observations of heavy rainfalls over Paris region during 2016 spring (250 m resolution):

- heaviest rain cells are much smaller than moderate ones
- **complex dynamics** of their aggregation into a large front

Scale symmetry and equations

École des Ponts ParisTech

Whereas elementary mathematical properties of Navier-Stokes solutions are still unknown (existence, uniqueness):

$$\begin{split} \frac{\partial \underline{u}}{\partial t} + \underline{u} \cdot \underline{grad}(\underline{u}) &= \underline{f} - \frac{1}{\rho} \underline{grad}(p) + \nu \Delta \underline{u} \\ \text{one can point out a scale symmetry (*):} & T_{\lambda} \vdots \underline{x} \mapsto \underline{x}/\lambda \\ \tilde{T}_{\lambda} \vdots & t \mapsto t/\lambda^{1-\gamma}; \underline{u} \mapsto \underline{u}/\lambda^{\gamma}; \\ \underline{f} \mapsto \underline{f}/\lambda^{2\gamma-1}; \nu \mapsto \nu/\lambda^{1+\gamma}; \rho \mapsto \rho/\lambda^{\gamma'} \end{split}$$

Kolmogorov's scaling (K41) obtained with:

$$\varepsilon(\ell) \approx \frac{\delta u^3}{\ell} \approx \bar{\varepsilon} \Rightarrow \gamma_K = 1/3$$

General case: multiple singularities γ 's:

 $\Pr(\gamma' > \gamma) \approx \lambda^{-c(\gamma)}$

(*) from to self-similarity (Sedov, 1961), symmetry (Parisi +Frisch, 1985), to generalised Galilean invariance (S+al, 2010)

Ecole des Ponts ParisTech

Beyond scalar rain rate?

- multifractals clarified the *singular* behaviour of the rain rate: a *mathematical measure*, not a *function*, rather a *flux accros scales*
- new step: not only along the vertical
- require multi-component/multivariate cascades
 - vector valued/multivariate multifractals
 - more generally: manifold valued multifractals
- generic solutions combine
 - scaling anisotropy
 - robust statistics (Lévy stable processes)
 - anti-commutation structural properties (Clifford algebras)

Scaling anisotropy: 2+*H*_z-dimensional vorticity equation (0<*H*_z<1)

Scaling stratified /convective atmosphere:

$$D\vec{\sigma}/Dt = (\vec{\sigma} \cdot \vec{\nabla}_h)\vec{u}_h$$
$$D\vec{\tau}/Dt = (\vec{\tau} \cdot \vec{\nabla}_h + \vec{\omega}_v \cdot \vec{\nabla}_v)\vec{u}_h$$
$$D\vec{\omega}_v/Dt = (\vec{\tau} \cdot \vec{\nabla}_h + \vec{\omega}_v \cdot \vec{\nabla}_v)\vec{u}_v$$

Strong interactions between *local generalized* scales,

- = *strongly non local* (Euclidean) scales !
- a difficulty for direct numerical simulations ?
- easy for stochastic simulations !

S&al, APC, 2012

Symmetries and unity roots

$$K^2 = J^2 = 1$$

Symmetries and unity roots

Symmetries and unity roots

Spherical geometry —> Hyperbolic geometry

Combining symmetries

2D linear Lie algebra H' = I(2, R):

$$G = d\mathbf{1} + e\mathbf{I} + f\mathbf{J} + c\mathbf{K};$$

$$\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$

$$\mathbf{J} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$2I = [J, K], \quad 2J = [I, K], \quad 2K = [J, I]$$

anti-commutators:

$$\{I,J\} = \{J,K\} = \{K,I\} = 0$$

$$I^2 = -J^2 = -K^2 = IJK = -1$$

(pseudo or split quaternions)

$$I_2^2 = J_2^2 = K_2^2 = I_2 J_2 K_2 = -1$$

Combining symmetries

2D linear Lie algebra H' = I(2, R):

$$G = d\mathbf{1} + e\mathbf{I} + f\mathbf{J} + c\mathbf{K};$$
$$\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$
$$\mathbf{J} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$2I = [J, K], \quad 2J = [I, K], \quad 2K = [J, I]$$

anti-commutators:

$$\{I,J\} = \{J,K\} = \{K,I\} = 0$$

$$I^2 = -J^2 = -K^2 = IJK = -1$$

$$I_2 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}; J_2 = \begin{bmatrix} 0 & -K \\ K & 0 \end{bmatrix}; K_2 = \begin{bmatrix} -I & 0 \\ 0 & I \end{bmatrix}$$

"quaternion equation" (Hamilton, 16/10/1843)

$$I_2^2 = J_2^2 = K_2^2 = I_2 J_2 K_2 = -1$$

Algebra of cascade generators

• Clifford algebra, dimension = 2^n

8

- real numbers R (n=0), complex numbers C (n=1), quaternions H (n=2) other hyper-complex numbers, external algebras and many more!
- Cl_{p,q}: generated by operators {eⁱ} that anti-commute and square to plus or minus the identity:

$$e^i e^j = -e^j e^i \ (i \neq j) \qquad (e^i)^2 = \pm 1$$

therefore a quadratic form Q of signature (p,q, p+q=n):

 $v^{2} = Q(v)1 \quad Q(v) = v_{1}^{2} + v_{2}^{2} + v_{p}^{2} - v_{p+1}^{2} - v_{p+2}^{2} - v_{p+q}^{2}$

ex.: *R* = *Cl*_{0,0} ; *C* = *Cl*_{0,1} ; *H*= *Cl*_{0,2} H'= *l*(2, R)= *Cl*_{2,0} = *Cl*_{1,1} "pseudo-/split- quaternions"

From algebra to group

Generalised Moivre-Euler formula: $(e^{u\theta})^{\alpha} = \cosh(\alpha\theta)1 + \sinh(\alpha\theta)u$

infinite number of u, $u^2 = \pm 1!$

Stochastic Clifford?

Statistical universality: stable Lévy vectors

$$\forall n \in N, \exists a(n), b(n) \in R : \sum_{i=1}^{n} X_i = a(n)X + b(n)$$

 $\exists \alpha \in (0,2] : a(n) = n^{1/\alpha}; \alpha < 2, \forall s \gg 1 : P([X| > s) \approx s^{-\alpha} \text{ (hyperbolic/Pareto tail)} \\ \alpha = 2 : \text{ Gauss}$

A stable Levy X is attractive for any Y_i having same type of tail:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} Y_i - b(n)}{a(n)} =^d X$$

– classical "quasi- scalar" case: only b is a vector like X_i and Y_i

- 'strong' vector case: *a* and α are matrices (S. et al., 2001)

Exponentiation of Lévy-Clifford algebra

- Existence ?
 - Q defines a bilinear form < . >

$$\langle X, Y \rangle = \frac{1}{2} \left(Q(X+Y) - Q(X) - Q(Y) \right)$$

- which defines a Laplace-Clifford transform,
- hence a second characteristic function (cumulant generating function

$$\operatorname{Eexp}(\langle q, \Gamma_{\lambda} \rangle) = Z_{\lambda}(q) = \exp(K_{\lambda}(q))$$

finite over set of cones \mathscr{A}^{\downarrow}

the opposite cones to that supporting the extremely assymetric Lévy stable component \mathscr{A}^{\uparrow}

Fractionnaly Integrated Flux model (FIF, vector version)

FIF assumes that both the renomalized propagator G_R and force f_R are known:

$$G_R^{-1} * u = f_R$$

where

 \mathcal{E}

here:
$$f_R = arepsilon^a$$

 G_R^{-1} is a fracti
differentia

ſ

ractionnal ential operator results from a continuous, vector, multiplicative cascade (Lie cascade)

Complex FIF simulation of a 2D cut of wind and its vorticity (color) ti = 15030 1015 30 40 50 60

Fractionnaly Integrated Flux model (FIF, vector version)

FIF assumes that both the renomalized propagator G_R and force f_R are known:

$$G_R^{-1} * u = f_R$$

where:

 \mathcal{E}

$$f_R = \varepsilon^a$$

is a fractionnal G_R^{-1} differential operator results from a continuous, vector, multiplicative cascade (Lie cascade)

Conclusions

S&T, Earth& Space, 2020 Chaos 2015, S&al. ACP, 2012, S&L, IJBC, 2011, Fitton&al., JMI 2013

- Intermittency: a key issue in geophysics and a major breakthrough with multifractals in the 1980's:
 - infinite hierarchy of fractal supports of the field singularities
 - beyond commonalities significant differences of approaches and applications
- No longer limited to scalar valued fields
 - multifractal operators: exponentiation from a stochastic Lie algebra of generators onto its Lie group of transformations
 - ex. Clifford algebra Cl_{p,q}
 - => from field physics to singularity physics multifractal multivariate rain rate to be tested within Ra2DW!

Beyond the curtain

- Multiscale complexity vs. computing brute force
 - (nonlinear) equations discretised on
 N voxels (≈cubes)
 - voxels of mm³ to reach the viscous scale (≈1mm)
 - atmosphere ≈ 10 km high x (10,000 km)² horizontal
 - $=> N \approx 10^{7} (10^{10})^2 = 10^{27}$
 - much larger than $N_A = 10^{23} \parallel$
- How to be deterministic... over a small range of scales?

Multiscale analysis of the scenario A2 1860-2100 (CNRM-CM3)

 • average intermittency C1 ↑
 • intermittency
 variability α ↓,
 => difficulty to
 evaluate extremes of
 precipitations

2018

- => refined analysis :
- time volution of the Most Probable Singularity
- γ_s (Hubert et al, 1993; Douglas & Barros, 2003):
- a scale invariant statistic, more stable than the
- maximal simulated precipitation P_{max}
- Enable us to conclude: **extremes** (Royer et al., 2008),
- -- seasonality can be taken into account (Royer et al., 2010)

From geometry to analytics

Figure 1: Commutative diagram illustrating how the analytical pullback transform T_{λ}^* is generated on the codomain \tilde{X} of the field φ by the geometric transform T_{λ} on the domain X.

ex.: fractal measure of dimension D $T_{\lambda}x = x/\lambda, T_{*,\lambda}\mu = \mu/\lambda^{D}$ ex.: simple scaling (e.g. Lamperti, 1962)

$$T_{\lambda}x = x/\lambda, \ T^*_{\lambda}y = y/\lambda^H$$

Figure 3: Commutative diagram, similar to that of Fig. 1, illustrating how the analytical pullback transform T_{λ}^* generates in turn the push forward $T_{*,\lambda}$ for measures or generalized functions μ 's.

From geometry to analytics

Figure 5: These diagrams show how the group property of T_{λ} propagates in a straightforward manner to the "pullback" transform T_{λ}^{*} (left) and then (by duality) to the "push forward" transform $T_{*,\lambda}$ (right).

Polarimetric radar observations of heavy rainfalls over Paris region during 2016 spring (250 m resolution):

- heaviest rain cells are much smaller than moderate ones
- true for their dimensions => multifractal field
- complex dynamics of their aggregation into a large front

Local flux of energy:

$$\epsilon_{n}^{i} = -\sum_{r=0}^{n} k_{n-r+1} \left[\left| \hat{u}_{n-r+1}^{2a^{r}(i)-1} \right|^{2} - \left| \hat{u}_{n-r+1}^{2a^{r}(i)} \right|^{2} \right] \operatorname{Im}(\hat{u}_{n}^{a^{r}(i)}) + (-1)^{a^{r}(i)+1} k_{n-r} \left| \hat{u}_{n}^{a^{r+1}(i)} \right|^{2} \operatorname{Im}(\hat{u}_{n-1}^{a^{r+1}(i)})$$

Mr Jourdain and Lie cascades

• Levi decomposition of any Lie algebra into its radical (*good guys*!) and a semi-simple subalgebra (*bad guys*!), e.g.:

$l(2,R) = R \, 1 \oplus_s sl(2,R)$

What is trickier:

- large number of degrees of freedom (*dim*²)
- log divergence with the resolution

universality:

•Levy multivariates, unlike Gaussian mutivariates, are non parametric (*)

• asymmetry of Levy noises to have convergent statistics,

e.g.:

 $\forall n \in N, \forall X \ge 0 : \exp(X) \ge X^n/n!$

(S&L, 95, T&S 96)

(*) limitation of anamorphosis transform and/or geostatistics

Mr Jourdain and Lie cascades

What is general and theoretically straightforward:

• $exp: Lie \ algebra \ \longmapsto \ Lie \ group$

scalar valued cascade: R^d --> R⁺

- Lie group: smooth manifold
- Lie algebra: tangent space to the group at the identity
- therefore a vector space with a skew product that satisfy the Jacobi identity:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

exemple: commutator of matrices

 $[X, Y] = XY - YX \qquad [X, Y] = 0 \Rightarrow \exp(X + Y) = \exp(X) \exp(Y)$

 $T_{X}M$

Clifford algebra

- An important family of Lie algebras of operators:
 - their dimension: 2ⁿ
 - generalizes real numbers R (n=0), complex numbers C (n=1), quaternions H (n=2) and other hyper-complex numbers, external algebras and more!
- Cl_{p,q} has a basis {eⁱ} whose vectors anti-commute and square to plus or minus the identity:

$$e^{i}e^{j} = -e^{j}e^{i} \ (i \neq j) \qquad (e^{i})^{2} = \pm 1$$

it is generated by a *n*-dimensional vectorial space V={*v*} of operators and a quadratic form *Q*, of signature (*p*,*q*, *p*+*q*=*n*), which can be put into the canonical form:

$$v^{2} = Q(v)1$$
 $Q(v) = v_{1}^{2} + v_{2}^{2} + v_{p}^{2} - v_{p+1}^{2} - v_{p+2}^{2} - v_{p+q}^{2}$

ex.:
$$R = CI_{0,0}$$
; $C = CI_{0,1}$; $H = CI_{0,2}$
H'= $I(2, R) = CI_{2,0} = CI_{1,1}$ "pseudo-/split- quaternions"

Clifford algebra

Clifford algebra are

- graded algebra (see figure)
- double algebra:
 - 2 multiplications
- super algebra (!):

 $Cl(V,Q) = Cl^0(V,Q) \oplus Cl^1(V,Q)$

for real algebra:

 $Cl_{p,q}^0(R) \cong Cl_{p,q-1}(R) \text{ for } q > 0$ $Cl_{p,q}^0(R) \cong Cl_{q,p-1}(R) \text{ for } p > 0$

 $\implies R \subset C \subset H \subset O \quad \dots$