

Daniel Schertzer

Hydrology, Meteorology \& Complexity
(HM\&Co)
Ecole des Ponts ParisTech

Ra2DW Kickoff
5 February 2024

Millenium problem of turbulence

Art piece 'Windswept' (Ch. Sowers, 2012): 612 freely rotating wind direction indicators to help a large public to understand the complexity of environment near the Earth surface

Polarimetric radar observations of heavy rainfalls over Paris region during 2016 spring (250 m resolution):

- heaviest rain cells are much smaller than moderate ones
- complex dynamics of their aggregation into a large front

Scale symmetry and equations

École des Ponts
ParisTech

Whereas elementary mathematical properties of Navier-Stokes solutions are still unknown (existence, uniqueness):

$$
\frac{\partial \underline{u}}{\partial t}+\underline{\underline{u} \cdot \underline{\operatorname{grad}}(\underline{u})}=\underline{f}-\frac{1}{\rho} \underline{\operatorname{grad}}(p)+\nu \Delta \underline{u}
$$

one can point out a scale symmetry (*):

$$
T_{\lambda}: \underline{\underline{x} \mapsto \underline{x} / \lambda}
$$

$$
\tilde{T}_{\lambda}:
$$

$$
t \mapsto t / \lambda^{1-\gamma} ; \underline{u} \mapsto \underline{u} / \lambda^{\gamma} ;
$$

$$
\underline{f} \mapsto \underline{f} / \lambda^{2 \gamma-1} ; \nu \mapsto \nu / \lambda^{1+\gamma} ; \rho \mapsto \rho / \lambda^{\gamma^{\prime}}
$$

Kolmogorov's scaling (K41) obtained with:

$$
\begin{gathered}
\varepsilon(\ell) \approx \frac{\delta u^{3}}{\ell} \approx \bar{\varepsilon} \Rightarrow \gamma_{K}=1 / 3 \\
\operatorname{Pr}\left(\gamma^{\prime}>\gamma\right) \approx \lambda^{-c(\gamma)}
\end{gathered}
$$

(*) from to self-similarity (Sedov, 1961), symmetry (Parisi +Frisch, 1985),
to generalised Galilean invariance (S+al, 2010)

Beyond scalar rain rate?

École des Ponts
ParisTech

- multifractals clarified the singular behaviour of the rain rate: a mathematical measure, not a function, rather a flux accros scales
- new step: not only along the vertical
- require multi-component/multivariate cascades
- vector valued/multivariate multifractals
- more generally: manifold valued multifractals
- generic solutions combine
- scaling anisotropy
- robust statistics (Lévy stable processes)
- anti-commutation structural properties (Clifford alaebras)

Scaling anisotropy: $2+H_{z}$-dimensional vorticity equation

$$
\left(0<H_{z}<1\right)
$$

Scaling stratified /convective atmosphere:

$$
\begin{array}{r}
D \vec{\sigma} / D t=\left(\vec{\sigma} \cdot \vec{\nabla}_{h}\right) \vec{u}_{h} \\
D \vec{\tau} / D t=\left(\vec{\tau} \cdot \vec{\nabla}_{h}+\vec{\omega}_{v} \cdot \vec{\nabla}_{v}\right) \vec{u}_{h} \\
D \vec{\omega}_{v} / D t=\left(\vec{\tau} \cdot \vec{\nabla}_{h}+\vec{\omega}_{v} \cdot \vec{\nabla}_{v}\right) \vec{u}_{v}
\end{array}
$$

Strong interactions between local generalized scales,
= strongly non local (Euclidean) scales !

- a difficulty for direct numerical simulations ?
- easy for stochastic simulations !

S\&al, APC, 2012

Symmetries and unity roots

$$
I^{2}=-1
$$

$$
\mathrm{K}^{2}=\mathrm{J}^{2}=1
$$

Symmetries and unity roots

$$
I^{2}=-1
$$

$$
\mathrm{K}^{2}=\mathrm{J}^{2}=1
$$

Symmetries and unity roots

$$
I^{2}=-1
$$

$$
\mathrm{K}^{2}=\mathrm{J}^{2}=1
$$

Spherical geometry \rightarrow Hyperbolic geometry

Combining symmetries

2D linear Lie algebra $H^{\prime}=\quad l(2, R)$:

$$
\begin{gathered}
G=d \mathbf{1}+e \mathbf{I}+f \mathbf{J}+c \mathbf{K} ; \\
\mathbf{1}=\left\lfloor\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \left\lvert\,, \quad \mathbf{I}=\left\lfloor\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\right.,\right. \\
\mathbf{J}=\left\lfloor\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right\rfloor, \quad \mathbf{K}=\left\lfloor\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right\rfloor
\end{gathered}
$$

$$
2 I=[J, K], \quad 2 J=[I, K], \quad 2 K=[J, I]
$$

anti-commutators:

$$
\{I, J\}=\{J, K\}=\{K, I\}=0
$$

$$
I^{2}=-J^{2}=-K^{2}=I J K=-1
$$

(pseudo or split quaternions)
"quaternion equation" (Hamilton, 16/10/1843)

$$
I_{2}^{2}=J_{2}^{2}=K_{2}^{2}=I_{2} J_{2} K_{2}=-1
$$

Combining symmetries

2D linear Lie algebra $H^{\prime}=\quad l(2, R)$:

$$
\begin{gathered}
G=d \mathbf{1}+e \mathbf{I}+f \mathbf{J}+c \mathbf{K} ; \\
\mathbf{1}=\left\lfloor\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array} \left\lvert\,, \quad \mathbf{I}=\left\lfloor\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\right.,\right. \\
\mathbf{J}=\left\lfloor\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \mathbf{K}=\left\lfloor\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right\rfloor
\end{gathered}
$$

$$
2 I=[J, K], \quad 2 J=[I, K], \quad 2 K=[J, I]
$$ anti-commutators:

$$
\{I, J\}=\{J, K\}=\{K, I\}=0
$$

$$
I^{2}=-J^{2}=-K^{2}=I J K=-1
$$

$$
I_{2}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] ; J_{2}=\left[\begin{array}{cc}
0 & -K \\
K & 0
\end{array}\right] ; K_{2}=\left[\begin{array}{cc}
-I & 0 \\
0 & I
\end{array}\right]
$$

"quaternion equation" (Hamilton, 16/10/1843)

$$
I_{2}^{2}=J_{2}^{2}=K_{2}^{2}=I_{2} J_{2} K_{2}=-1
$$

Algebra of cascade generators

- Clifford algebra, dimension $=2^{n}$
- real numbers $R(n=0)$, complex numbers $C(n=1)$, quaternions $H(n=2)$ other hyper-complex numbers, external algebras and many more!
- $C l_{p, q}$: generated by operators $\left\{e^{\prime}\right\}$ that anti-commute and square to plus or minus the identity:

$$
e^{i} e^{j}=-e^{j} e^{i}(i \neq j) \quad\left(e^{i}\right)^{2}= \pm 1
$$

- therefore a quadratic form Q of signature $(p, q, p+q=n)$:

$$
v^{2}=Q(v) 1 \quad Q(v)=v_{1}^{2}+v_{2}^{2} . .+v_{p}^{2}-v_{p+1}^{2}-v_{p+2}^{2} . \cdot-v_{p+q}^{2}
$$

$$
\begin{gathered}
\text { ex.: } R=C l_{0,0} ; C=C l_{0,1} ; H=C l_{0,2} \\
H \prime=I(2, R)=C l_{2,0}=C l_{1,1} \\
\text { "pseudo-/split- quaternions" }
\end{gathered}
$$

From algebra to group

Generalised Moivre-Euler formula: $\quad\left(e^{u \theta}\right)^{\alpha}=\cosh (\alpha \theta) 1+\sinh (\alpha \theta) u$

$$
\text { infinite number of } u, u^{2}= \pm 1 \text { ! }
$$

Stochastic Clifford?

- Statistical universality: stable Lévy vectors

$$
\forall n \in N, \exists a(n), b(n) \in R: \sum_{i=1}^{n} X_{i}=^{d} a(n) X+b(n)
$$

$\exists \alpha \in(0,2]: a(n)=n^{1 / \alpha} ; \alpha<2, \forall s \gg 1: \mathrm{P}\left([X \mid>s) \approx s^{-\alpha}\right.$ (hyperbolic/Pareto tail)

$$
\alpha=2: \text { Gauss }
$$

A stable Levy X is attractive for any Y_{i} having same type of tail:

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} Y_{i}-b(n)}{a(n)}=^{d} X
$$

- classical "quasi- scalar" case: only b is a vector like X_{i} and Y_{i}
- 'strong' vector case: a and α are matrices (s. et al., 2001)

Exponentiation of Lévy-Clifford algebra

- Existence?
- Q defines a bilinear form < . >

$$
<X, Y>=\frac{1}{2}(Q(X+Y)-Q(X)-Q(Y))
$$

- which defines a Laplace-Clifford transform,
- hence a second characteristic function (cumulant generating function

$$
\operatorname{Eexp}\left(\left\langle q, \Gamma_{\lambda}\right\rangle\right)=Z_{\lambda}(q)=\exp \left(K_{\lambda}(q)\right)
$$

finite over set of cones \mathscr{A}^{\downarrow}
the opposite cones to that supporting the extremely assymetric Lévy stable component \mathscr{A}^{\uparrow}

Fractionnaly Integrated Flux model (FIF, vector version)

FIF assumes that both the renomalized propagator G_{R} and force f_{R} are known:

Complex FIF simulation of a 2D cut of wind and its vorticity (color)

$$
G_{R}^{-1} * u=f_{R}
$$

where: $\quad f_{R}=\varepsilon^{a}$
$G_{R}^{-1} \quad \begin{array}{ll}\text { is a fractionnal } \\ \text { differential operator }\end{array}$ results from a
ε continuous, vector, multiplicative cascade (Lie cascade)

Fractionnaly Integrated Flux model (FIF, vector version)

FIF assumes that both the renomalized propagator G_{R} and force f_{R} are known:

$$
G_{R}^{-1} * u=f_{R}
$$

where: $\quad f_{R}=\varepsilon^{a}$

$$
G_{R}^{-1} \quad \begin{array}{ll}
\text { is a fractionnal } \\
\text { differential operator }
\end{array}
$$ results from a

ε continuous, vector, multiplicative cascade (Lie cascade)

3D FIF wind simulation based on quaternions

Conclusions

S\&T, Earth\& Space, 2020 Chaos 2015, S\&al. ACP, 2012, S\&L, IJBC, 2011, Fitton\&al., JMI 2013

- Intermittency: a key issue in geophysics and a major breakthrough with multifractals in the 1980's:
- infinite hierarchy of fractal supports of the field singularities
- beyond commonalities significant differences of approaches and applications
- No longer limited to scalar valued fields
- multifractal operators: exponentiation from a stochastic Lie algebra of generators onto its Lie group of transformations
- ex. Clifford algebra $C l_{p, q}$
=> from field physics to singularity physics multifractal multivariate rain rate to be tested within Ra2DW!

Beyond the curtain

ParisTech

- Multiscale complexity vs. computing brute force
- (nonlinear) equations discretised on N voxels (ぇcubes)
- voxels of mm^{3} to reach the viscous scale ($\approx 1 \mathrm{~mm}$)
- atmosphere $\approx 10 \mathrm{~km}$ high $\times(10,000 \mathrm{~km})^{2}$ horizonta
- $\Rightarrow N \approx 10^{7}\left(10^{10}\right)^{2}=10^{27}$
- much larger than $N_{A}=10^{23}$!!
- How to be deterministic... over a small range of
 scales?

eÉcole des Ponts ParisTech

Multiscale analysis of the scenario A2 1860-2100 (CNRM-CMB)

- average

 intermittency C1 \uparrow -intermittency variability $\alpha \downarrow$, => difficulty toevaluate extremes of precipitations

=> refined analysis:

- time volution of the Most Probable Singularity
γ_{s} (Hubert et al, 1993; Douglas \& Barros, 2003):
- a scale invariant statistic, more stable than the maximal simulated precipitation $P_{\max }$
- Enable us to conclude: extremes \uparrow (Royer et al., 2008),
-- seasonality can be taken into account (Royer et al., 2010)

From geometry to analytics

$T_{\lambda}^{*}{ }^{\text {=pullback of }} T_{\lambda}$ for functions

Figure 1: Commutative diagram illustrating how the analytical pullback transform T_{λ}^{*} is generated on the codomain \tilde{X} of the field φ by the geometric transform T_{λ} on the domain X.

ex.: fractal measure of dimension D

$T_{\lambda} x=x / \lambda, T_{*, \lambda} \mu=\mu / \lambda^{D}$
ex.: simple scaling (e.g. Lamperti, 1962)

$$
T_{\lambda} x=x / \lambda, T_{\lambda}^{*} y=y / \lambda^{H}
$$

$$
T_{*, \lambda} \quad=\text { push forward of } \quad T_{\lambda}
$$

Figure 3: Commutative diagram, similar to that of Fig. 1, illustrating how the analytical pullback transform T_{λ}^{*} generates in turn the push forward $T_{*, \lambda}$ for measures or generalized functions μ^{\prime} s.

From geometry to analytics

Figure 5: These diagrams show how the group property of T_{λ} propagates in a straightforward manner to the "pullback" transform $T_{\lambda}^{\prime \prime}$ (left) and then (by duality) to the "push forward" transform $T_{*, \lambda}$ (right).

cascades

Russian dolls... and multiplicative

3D Scaling Gyroscope Cascade

$$
\begin{aligned}
& \left(\frac{d}{d t}+v k_{n}^{2}\right) \hat{u}_{n}^{i} *=i\left\{k_{n+1}\left[\left|\hat{u}_{n+1}^{2 i-1}\right|^{-}-\left|\hat{u}_{n+1}^{2 i}\right|^{-}\right]+(-1)^{i} k_{n} \hat{u}_{n}^{i} * \hat{u}_{n-1}^{a(i)}\right\} \\
& a(i) \text { is an ancestor. }
\end{aligned}
$$

(a)

Local flux of energy:

$$
\varepsilon_{n}^{i}=-\sum_{r=0}^{n} k_{n-r+1}\left[| \hat { u } _ { n - r + 1 } ^ { 2 a ^ { r } (i) - 1 } | ^ { 2 } | - | \hat { u } _ { n - r + 1 } ^ { 2 a ^ { r } (i) } | ^ { 2 }] \operatorname { I m } \left(\hat{u}_{n}^{r} a^{r}(i)+(-1)^{a^{r}(i)+1} k_{n-r}\left|\hat{u}_{n}^{a^{r+1}(i)}\right| \operatorname{Im}\left(\hat{u}_{n-1}^{a^{r+1}(i)}\right)\right.\right.
$$

Mr Jourdain and Lie cascades

- Levi decomposition of any Lie algebra into its radical (good guys!) and a semi-simple subalgebra (bad guys!), e.g.:

$$
l(2, R)=R 1 \oplus_{s} \operatorname{sl}(2, R)
$$

What is trickier:

- large number of degrees of freedom (dim^{2})
- log divergence with the resolution
- universality:
-Levy multivariates, unlike Gaussian mutivariates, are non parametric (*)
- asymmetry of Levy noises to have convergent statistics,
e.g.:

$$
\forall n \in N, \forall X \geq 0: \exp (X) \geq X^{n} / n!
$$

Mr Jourdain and Lie cascades

What is general and theoretically straightforward:

$$
\text { exp:Lie algebra } \longmapsto \text { Lie group }
$$

scalar valued cascade: $R^{d}-->R^{+}$

- Lie group: smooth manifold
- Lie algebra: tangent space to the group at the identity
- therefore a vector space with a skew product that satisfy the Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

exemple: commutator of matrices

$$
[X, Y]=X Y-Y X \quad[X, Y]=0 \Rightarrow \exp (X+Y)=\exp (X) \exp (Y)
$$

Clifford algebra

- An important family of Lie algebras of operators:
- their dimension: 2^{n}
- generalizes real numbers $R(n=0)$, complex numbers $C(n=1)$, quaternions $H(n=2)$ and other hyper-complex numbers, external algebras and more!
- $C l_{p, q}$ has a basis $\left\{e e^{\prime}\right\}$ whose vectors anti-commute and square to plus or minus the identity:

$$
e^{i} e^{j}=-e^{j} e^{i}(i \neq j) \quad\left(e^{i}\right)^{2}= \pm 1
$$

- it is generated by a n-dimensional vectorial space $\mathrm{V}=\{v\}$ of operators and a quadratic form Q, of signature ($p, q, p+q=n$), which can be put into the canonical form:

$$
v^{2}=Q(v) 1 \quad Q(v)=v_{1}^{2}+v_{2}^{2} . \cdot+v_{p}^{2}-v_{p+1}^{2}-v_{p+2 \cdot \cdot}^{2}-v_{p+q}^{2}
$$

ex.: $R=C l_{0,0} ; C=C l_{0,1} ; H=C l_{0,2}$
$H^{\prime}=I(2, R)=C l_{2,0}=C l_{1,1} \quad$ "pseudo-/split- quaternions"

Clifford algebra

Clifford algebra are

- graded algebra (see figure)
- double algebra:
- 2 multiplications
- super algebra (!):

$$
C l(V, Q)=C l^{0}(V, Q) \oplus C l^{1}(V, Q)
$$ for real algebra:

$$
\begin{aligned}
& C l_{p, q}^{0}(R) \cong C l_{p, q-1}(R) \text { for } q>0 \\
& C l_{p, q}^{0}(R) \cong C l_{q, p-1}(R) \text { for } p>0
\end{aligned}
$$

$$
\Rightarrow \quad R \subset C \subset H \subset O \quad \ldots
$$

