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Millenium problem of turbulence  !

Art piece ‘Windswept’ (Ch. Sowers, 
2012): 612 freely rotating wind 
direction indicators to help a large 
public to understand the complexity of 
environment near the Earth surface

Polarimetric radar observations of heavy 
rainfalls over Paris region  during 2016 
spring (250 m resolution):

- heaviest rain cells are much smaller than 

moderate ones

- complex dynamics of their aggregation 

into a large front
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Scale symmetry and equations
Whereas elementary mathematical properties  of Navier-Stokes solutions 
are still unknown (existence, uniqueness):

General case: multiple singularities γ’s: 

€ 

Pr( ʹ γ > γ) ≈ λ−c(γ )

x 7! x/�one can point out a scale symmetry (*):

Kolmogorov’s scaling (K41) obtained with:

(*)  from to self-similarity (Sedov, 1961), symmetry (Parisi +Frisch, 1985), 

to generalised Galilean invariance (S+al, 2010)
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Beyond  scalar rain rate? 

– multifractals clarified the singular behaviour of the rain rate: 
a mathematical measure, not a function, rather a flux 
accros scales 


• new step: not only along the vertical

• require multi-component/multivariate cascades


• vector valued/multivariate multifractals

• more generally: manifold valued multifractals 


• generic solutions combine

• scaling anisotropy 

• robust statistics (Lévy stable processes) 


• anti-commutation structural properties (Clifford algebras)



Scaling anisotropy: 2+Hz-dimensional vorticity equation  

   (0<Hz<1)
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Scaling stratified /convective 
atmosphere:              

D⌅�/Dt = (⌅� · ⌅�h)⌅uh

D⌅⇥/Dt = (⌅⇥ · ⌅�h + ⌅⇤v · ⌅�v)⌅uh

D⌅⇤v/Dt = (⌅⇥ · ⌅�h + ⌅⇤v · ⌅�v)⌅uv

Strong interactions between local generalized scales, 
=  strongly non local (Euclidean) scales !
- a difficulty for direct numerical simulations ?
- easy for stochastic simulations !
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Symmetries and unity roots
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Spherical geometry  —>   Hyperbolic geometry
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Combining symmetries
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For the two-dimensional case [and parame-
trization given by Eq. (79)], this reduces to the
following:

Tr(G) > 0 and
det(G) > 0 ⇔ d > 0 and d2 > a2.

(86)

8.3. Nonlinear GSI and Lie
cascades

We will use the example of the two-dimensional gen-
erator G with its above parametrization [Eq. (79)]
that corresponds to a “pseudo-quaternions” repre-
sentation:

G = d1 + eI + fJ + cK;

1 =
⌊
1 0
0 1

⌋
, I =

⌊
0 −1
1 0

⌋
,

J =
⌊
0 1
1 0

⌋
, K =

⌊
1 0
0 −1

⌋
(87)

to point out that in a rather general manner linear
GSI results can be extended, albeit given technical
difficulties briefly mentioned below, to the nonlinear
GSI and lead to the general notion of Lie cascades.
Let us first point out that there are at least two rea-
sons to look for nonlinear GSI. The first one is that
one has often to work with manifolds rather than
with vector spaces, the second one [Schertzer &
Lovejoy, 1991], not necessarily independent of the
previous one, is that one has often to deal with
local symmetries, e.g. the original (Weyl’s) local
gauge invariance, rather than with global ones. The
main point is that the generators of the (local)
symmetries define Lie algebra whose structure is
essential to understand the interrelations between
various symmetries.

Indeed, let us consider that the symmetries
Tλ and T̃λ, therefore the whole scale symmetry
Sλ [Eq. (40)], together with all other potential
symmetries (e.g. more classical symmetries such
as rotations) smoothly vary with respect to their
parameters. These symmetries not only form a
group with respect to their composition, but also
a smooth manifold and therefore a Lie group G
(e.g. [Sattinger & Weaver, 1986]). In a rather gen-
eral manner, this group is generated from the
symmetries that are infinitesimally close to the
identity (for infinitesimally small parameter vari-
ation), which spans the tangent space to the iden-
tity transformation. In fact, these generators form
a Lie algebra g, i.e. a vector space with a (bilinear)

skewed product called the Lie bracket [·, ·] that fur-
thermore satisfies the Jacobi identity. For matrices,
the Lie bracket is defined to be the commutator:

[
X,Y

]
= XY − Y X (88)

In the example of the two-dimensional generator G
we have:

2I =
[
J,K

]
, 2J =

[
I,K

]
, 2K =

[
J, I
]

(89)

whereas 1 obviously commutes with any element
of this Lie algebra l(2, R) of the two-dimensional
real matrices. Recall that any Lie algebra g is said
to be abelian if its bracket, whatever is its expres-
sion, vanishes (i.e. ∀X,Y ∈ g : [X,Y ] = 0, in
short: [g, g] = 0), a Lie subalgebra s of g is a sub-
space of g that is closed under the Lie bracket (i.e.
[s, s] ⊂ s), a subspace l of g is an ideal of g if s is
not only closed with itself but with g (i.e. [g, l] ⊂ l),
the largest abelian ideal of g is called its radical
and if it is zero g is called semi-simple. The cru-
cial importance of abelian (sub-)algebra is due to
the fact that the corresponding Lie (sub-)groups are
indeed commutative, i.e. the symmetries commute.

With the help of these definitions, it is rather
straightforward to check that the one-dimensional
subalgebra R generated by 1 is the radical of l(2, R),
whereas s spanned by {I,J,K} is semi-simple. The
latter is classically known as sl(2, R), the special
two-dimensional real linear algebra of matrices with
zero trace. We have:

l(2, R) = R ⊕ sl(2, R) (90)

which is merely a particular example of the Levi
decomposition of any Lie algebra into its radical
and a semi-simple subalgebra. It is also important
to note that the three two-dimensional subalgebra
si (i = 1, 3) spanned respectively by {1, I}, {1,J},
{1,K} are all abelian (s1 is merely equivalent to the
set of complex numbers), but they are not ideals of
l(2, R). It means that the corresponding subgroups
are commutative, but do not commute with any ele-
ment of the full group generated by l(2, R). A simple
consequence is that if the generator G of Tλ (resp.
G̃ of T̃λ) belongs to s3, then it will commute with
any symmetry generated by K, but not with those
generated by I, i.e. rotations.

Whereas the mapping from Lie groups to Lie
algebra is rather one-to-one, the inverse is often
more complex: different Lie groups may have the
same Lie algebra. Nevertheless, the exponential
map allows to fully capture the local structure of the
group from its algebra. Here, the exponential map
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l(2, R):

{I, J} = {J,K} = {K, I} = 0

2D linear Lie algebra  H’=

anti-commutators:

“quaternion equation” (Hamilton, 16/10/1843) 

I22 = J2
2 = K2

2 = I2J2K2 = �1

I2 = �J2 = �K2 = IJK = �1

(pseudo or split quaternions)
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
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Q(v) = v21 + v22 ..+ v2p � v2p+1 � v2p+2..� v2p+q

Algebra of cascade generators

(ei)2 = ±1eiej = �ejei (i 6= j)

ex.: R = Cl0,0 ; C = Cl0,1 ; H= Cl0,2  

      H’= l(2, R)= Cl2,0 = Cl1,1   

“pseudo-/split- quaternions”

Mandelbrot set on pseudo-quaternions, S&T,2018

• Clifford algebra,  dimension = 2n

– real numbers R (n=0), complex numbers C (n=1), 

quaternions H (n=2) other hyper-complex numbers, 
external algebras and many more!


• Clp,q : generated by operators {ei} that anti-commute 
and square to plus or minus the identity: 


• therefore a quadratic form Q of signature (p,q, p+q=n):

v2 = Q(v)1



Exp

{K, I}

-20 -10 10 20
K

-20

-10

10

20

ⅈ
Hyperbolic Geometry

From algebra to group

infinite number of u ,  u2= ±1!

Generalised Moivre-Euler formula:

✓2 = Q < 0, ✓ = i✓0, ✓0 2 R+

✓2 = Q < 0, ✓ = i✓0, ✓0 2 R�

✓2 = Q > 0, ✓ > 0✓2 = Q > 0, ✓ < 0

{1, K, I}

(euθ)α = cosh(αθ)1 + sinh(αθ)u



Stochastic Clifford?
• Statistical universality: stable Lévy vectors

– classical “quasi- scalar” case: only b is a vector like Xi and Yi


– ‘strong’ vector case: a and  are matrices   (S. et al., 2001 )α

8n 2 N, 9a(n), b(n) 2 R :
nX

i=1

Xi =
d a(n)X + b(n)

lim
n!1

Pn
i=1 Yi � b(n)

a(n)
=d X

A	stable	Levy	X	is		attractive	for	any		Yi	having	same	type	of	tail:	

∃α ∈ (0,2] : a(n) = n1/α; α < 2, ∀s ≫ 1 : P([X | > s) ≈ s−α (hyperbolic/Pareto	tail)
α = 2 : Gauss



Exponentiation of Lévy-Clifford algebra
• Existence ?


– Q defines a bilinear form < . >

– which defines a Laplace-Clifford transform, 

– hence a second characteristic function (cumulant generating function)

finite over set of cones

the opposite cones to that supporting the extremely 
assymetric Lévy stable component 

< X,Y >=
1

2

�
Q(X + Y )�Q(X)�Q(Y )

�
<latexit sha1_base64="vVM6PNvxOViHEpbx6Xth2tWr82A=">AAACYXicbVFNT+MwEHUCu5TyFdgjF2srJNiPKikHOMAKwYUjSFto1VTVxJ0UC8cJtoNaovzJve2FC38EN0T7AYxk+/m9GY/9HGWCa+P7vx13YfHDx6XGcnNldW19w9vcutJprhh2WSpS1YtAo+ASu4Ybgb1MISSRwOvo9myuX9+j0jyVP80sw2ECE8ljzsBYauRNwwgnXBZ4J0EpmH0pQwERiiJLBSj+UKW18a5sHvW+9X/QYxrGClgRlEWnrGuzBIzi0/Jyt/e1v/fdLvOpvxeiHP8Rm9Xub5uR1/LbfhX0LQhq0CJ1XIy8X+E4ZXmC0jABWg8CPzPDApThTKA9P9eYAbuFCQ4slJCgHhaVQyXdscyYxqmyQxpasf9WFJBoPUsim2nve6Nfa3PyPW2Qm/hwWHCZ5QYle2kU54KalM7tpmOukBkxswCY4vaulN2AddDYT2laE4LXT34LrjrtYL/tX3ZaJ6e1HQ2yTT6TXRKQA3JCzskF6RJGHp1FZ81Zd57cZddzt15SXaeu+UT+C3f7GeV4tsI=</latexit>

E exp( < q, Γλ > ) = Zλ(q) = exp(Kλ(q))

𝒜↑

𝒜↓



G�1
R ⇤ u = fR

fR = "a

G�1
R

"

Fractionnaly Integrated Flux  �
model (FIF, vector version)

FIF assumes that both the renomalized

propagator         and force       are known:fRGR

where:

results from a 
continuous, vector, 
multiplicative cascade

(Lie cascade)

is a fractionnal 
differential operator

Complex FIF simulation  of a 2D 
cut of wind and its vorticity (color)
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G�1
R ⇤ u = fR

fR = "a

G�1
R

"

Fractionnaly Integrated Flux  �
model (FIF, vector version)

FIF assumes that both the renomalized

propagator         and force       are known:fRGR

where:

results from a 
continuous, vector, 
multiplicative cascade

(Lie cascade)

is a fractionnal 
differential operator

3D FIF wind simulation  based 
on quaternions
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Conclusions
• Intermittency: a key issue in geophysics and a major                     

breakthrough with multifractals in the 1980’s:

• infinite hierarchy of fractal supports of the field singularities

• beyond commonalities significant differences of approaches 

and applications

• No longer limited to scalar valued fields


• multifractal operators: exponentiation from a 
stochastic Lie algebra of generators onto its Lie 
group of transformations


• ex. Clifford algebra Clp,q


=> from field physics to singularity physics

multifractal multivariate rain rate to be tested within Ra2DW!


S&T, Earth& Space, 2020

Chaos 2015, S&al. ACP, 2012, 

S&L, IJBC, 2011,

Fitton&al., JMI 2013
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Beyond the curtain

• Multiscale complexity vs. computing 
brute force


– (nonlinear) equations discretised on 
N voxels (≈cubes)


– voxels of mm3 to reach the viscous scale 
(≈1mm)


– atmosphere ≈ 10 km high x (10,000 km)2 horizontal

– => N ≈ 107(1010)2 =1027 

– much larger than NA=1023 !!


• How to be deterministic… over a small range of 
scales?



Multiscale analysis of the scenario 
A2  1860-2100 (CNRM-CM3)

=>  refined analysis : 

- time volution of the Most Probable  Singularity 
γs (Hubert et al, 1993; Douglas & Barros, 2003):

- a scale invariant  statistic, more stable than the 
maximal simulated  precipitation Pma x. 

- Enable us to conclude: extremes  ↑ (Royer et 
al., 2008), 

-- seasonality can be taken into account (Royer 
et al., 2010)

• average 
intermittency C1 ↑

•intermittency 
variability α ↓, 
=>  difficulty to 
evaluate extremes of 
precipitations

α
C1



From geometry to analytics

T�

T ⇤
� =pullback of 

ex.: simple scaling (e.g. Lamperti, 1962)

An Introduction to Multifractals and Scale Symmetry Groups 3

or statistical with various meanings (e.g. weakly, in probability, almost 
surely, surely or in a given norm).

2. From Geometry to Analytics

2.1 Multifractals, Scale Transforms and Symmetries

Although it is usual to introduce multifractals after introducing fractal 
(geometric) sets, since this corresponds partly—but not totally—to 
historical developments, we believe it is more fruitful to proceed in an 
opposite manner, i.e. to see fractals as a very special case with a number of 
limitations. In fact, these limiting features of fractal sets have impeded the 
initial development of multifractals. The most obvious case is presumably 
the question of the uniqueness of the Hausdorff dimension or the Hurst 
exponent. This uniqueness is a mere mathematical fact for geometric 
sets (Falconer 1985, Falconer 1990) and respectively for fractal processes, 
e.g. the celebrated Brownian motion (Mandelbrot and Van Ness 1968). It 
was unfortunately believed to be a rather general feature and thus has 
led to a kind of dogma. As a consequence, the differences in estimates 
of these exponents obtained by different algorithms were unfortunately 
considered as unessential (Mandelbrot 1983, Mandelbrot 1989), whereas 
these algorithms were in fact capturing different features of a process that 
could not be reduced to a geometric object. 

Here, we go a step further with respect to what was done (Schertzer 
et al. 2012, Schertzer and Tchiguirinskaia 2015) towards a presentation 
of multifractals based on symmetry groups. This is illustrated by the 
commutative diagram of Fig. 1, where the field φ that maps the domain X 
into the codomain �X, is composed with a scale transform Tl of the domain 
X. In the simplest case (see Section “Generalized Scale Invariance (GSI)” 
for extensions), Tl, which is the usual (isotropic) contraction/dilation for 

Figure 1: Commutative diagram illustrating how the analytical 
pullback transform Tλ

*  is generated on the codomain �X of the 
field φ by the geometric transform Tl on the domain X.

6 Fractals: Concepts and Applications in Geosciences

Figure 3: Commutative diagram, similar to that of Fig. 1, illustrating how the 
analytical pullback transform Tl

*  generates in turn the push forward T*,λ for 
measures or generalized functions μ’s.

Although diagrams of Figs 1 and 3 look very similar, an important 
difference is that the “push forward” transform T*,λ indeed pushes 
forward the measure μ from the old coordinate x to the new coordinate 
y = Tλx and thus generalizes the covariant coordinate transform of the 
(finite dimensional) dual vector spaces. We will use the generic notation   
�Tl  to represent both transforms Tl

*  and T*,λ on the spaces they map, 
when their differences are not relevant. It is worthwhile to note that the 
renormalization group approach (Wilson 1971) and its variants defines 
transformations similar to Tl

*  by a decimation process (i.e. reducing the 
degrees of freedom of a system) rather than by a change of scale. Loosely 
speaking, the starting point is not the same, but both approaches converge.

2.3 Generalized Scale Invariance (GSI)

The definitions of “pullback” and “push forward” transforms are 
extremely broad and we need to specialize them with respect to a given 
concept of scale. We are going to use for the domain and the codomain 
a generalization of the Euclidean metrics, still constituting a building 
block of the Fractal Geometry of Nature (Mandelbrot 1977, Mandelbrot 
1983) in spite of its claim to be fundamentally non-Euclidean. This is at 
first required by the ubiquitous evidence of anisotropic, multiscale fields 
and patterns, and the resulting necessity to avoid the usual hypothesis 
of rotational symmetry prior to a scale symmetry (Schertzer and Lovejoy 
1985a, Schertzer and Lovejoy 2011). For instance, this hypothesis had 
very unfortunate consequences in atmospheric turbulence research, 
which had been blocked for decades by considering only 2D turbulence 
and 3D turbulence, whereas none of this regime can be truly relevant 
(Schertzer and Lovejoy 1983, Schertzer and Lovejoy 1985b, Schertzer and 
Lovejoy 1988, Schertzer et al. 2012). Figure 4 displays examples of strongly 
anisotropic (closed) balls Bt defined by the generalized scale ||.||:

                          ∀ ∈ = ≤+! " " !R B x xt: { | }  (11)

T�x = x/�, T⇤,�µ = µ/�D

ex.: fractal measure of dimension  D

T⇤,� =push forward of 

T�

T�x = x/�, T ⇤
�
y = y/�H

for functions

for measures 

or generalised 


functions
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Invariance corresponds to that of linear GSI, where the scale transform is 
a multiplicative group generated by a given matrix G:

 Tλ = λG � exp(Log(λ)G) (16)

It is straightforward to explicitly obtain an associated generalized 
scale for any given α > 0 generalizing the classic Lα norm, if this generator 
has a positive spectrum Spec(G) = {ni}, with corresponding eigenvectors ei 
(the classical Lα  norm corresponds to vi � 1):

                x e x e x e x ei
i

i
i

i

i
i

i
i

ii∑ ∑=






=
a

a

a
a

a

1
1; ν

 (17)

This illustrates the fact that, like classical norms, several generalized 
scales could correspond to the same scale transform. Although not 
necessarily, they may have some strong common properties. There is a 
similar definition of equivalence between two generalized scales ||.||1 and 
||.||2:

                  ∃ > ∀ ∈ ≤ ≤A B x X A x x B x, , :0 1 2 1  (18)

3. Scalar-valued Multifractals 

3.1 Scaling of the Statistical Moments and Singularities, the Mellin 
and Legendre Transforms 

Before addressing the more recent and more complex case of vector-
valued multifractals, we consider the somewhat classical case of scalar-
valued multifractals. Although this took some time to be understood, 
the scalar-valued multifractals are in many respects a straightforward 

Figure 5: These diagrams show how the group property of Tλ propagates in a 
straightforward manner to the “pullback” transform Tl

*  (left) and then (by 
duality) to the “push forward” transform T*, λ (right).



Russian dolls… and multiplicative 
cascades

Polarimetric radar observations of heavy rainfalls over Paris 

region  during 2016 spring (250 m resolution):

- heaviest rain cells are much smaller than moderate ones
- true for their dimensions => multifractal field
- complex dynamics of their aggregation into a large front

CASCADE
  LEVELS

 0 --

 1 --

 
 2 --
  .
  .
  .

 n --  

x
y

ε

0l

l0 / λ1

2

n

l0 / λ

l0 / λ

multiplication by 4
independent random
(multiplicative)
increments

multiplication by 16
independent random
(multiplicative)
increments

Discrete in scale cascades


only for pedagogy !
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3D  Scaling Gyroscope Cascade



Mr Jourdain and Lie cascades
•    Levi decomposition of any Lie algebra into its radical 
(good guys!) and a semi-simple subalgebra (bad guys!), 
e.g.:  


  

    What is trickier:


• large number of degrees of freedom (dim2)

• log divergence with the resolution

• universality: 


•Levy multivariates, unlike Gaussian mutivariates, are 
non parametric (*)

• asymmetry of Levy noises to have convergent statistics, 
e.g.:

(S&L, 95, T&S 96)
(*) limitation of anamorphosis transform and/or geostatistics 

8n 2 N, 8X � 0 : exp(X) � Xn/n!

l(2, R) = R 1�s sl(2, R)
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exp : Lie algebra 7�! Lie group

Mr Jourdain and Lie cascades

scalar valued cascade: Rd --> R+

What is general and theoretically straightforward:

•

• Lie group: smooth manifold

• Lie algebra: tangent space to the 

group at the identity

•  therefore a vector space with a skew 

product that satisfy the Jacobi 
identity: 


[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

[X,Y ] = XY � Y X

exemple: commutator of matrices
[X,Y ] = 0 ) exp(X + Y ) = exp(X) exp(Y )
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v2 = Q(v)1 Q(v) = v21 + v22 ..+ v2p � v2p+1 � v2p+2..� v2p+q

Clifford algebra
• An important family of Lie algebras of operators:


– their dimension: 2n

– generalizes real numbers R (n=0), complex numbers C (n=1), quaternions H (n=2) 

and other hyper-complex numbers, external algebras and more!

• Clp,q has a basis {ei} whose vectors anti-commute and square to plus or 

minus the identity: 


• it is generated by a n-dimensional vectorial space V={v} of operators and a 
quadratic form Q, of signature (p,q, p+q=n), which can be put into the 
canonical form:

(ei)2 = ±1eiej = �ejei (i 6= j)

ex.: R = Cl0,0 ; C = Cl0,1 ; H= Cl0,2  

      H’= l(2, R)= Cl2,0 = Cl1,1   “pseudo-/split- quaternions”



Clifford algebra

28

Clifford algebra are 
- graded algebra (see figure)
- double algebra:

• 2 multiplications 
- super algebra (! ):
Cl(V,Q) = Cl0(V,Q)� Cl1(V,Q)

Cl0p,q(R) ⇠= Clp,q�1(R) for q > 0

Cl0p,q(R) ⇠= Clq,p�1(R) for p > 0

for real algebra:

==> R ⇢ C ⇢ H ⇢ O …


