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raindrop size distribution, .\"_(D) (mm"m %)

raindrop size distributions for different rain rates

= = = Marshall and Palmer (1948)
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How to measure drop size distributions?

Fig. 6.—Large thundershower raindrops of September 20, 1904. There Fig. 10.—Great thundershower of September 3, 1904. Shower we SIVE
were dense 7, Di S ¢ 3 roug is shower. Duration, companied by vivid and frequent lightning. Duration, one hour. |One
one hour. [sample taken every five minutes.|

One sample taken every seven minutes.

(W.A. Bentley, Studies of raindrops and raindrop phenomena, Monthly Weather Review, Oct. 1904)



How to measure drop size distributions?




Tlme series of drop S|ze dlstrlbutlons
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[2D-Video-Distrometer measurements in Lae / Papua New Guinea were carried out by
JOANNEUM RESEARCH, Graz / Austria, under ESA Contract No. 9949/92/NL/PB(SC).]



What Is a raindrop size distribution (DSD)?

n(d) =nf(d)

n(d) =nop(x)
no =ny/{d)
x=d/{d)

(Courtesy of J.M. Porra)



How does rainfall rate depend on DSD?

R= f n(d)(nd’/6)Udd

U=Ud’

y=1/2and U; =+/(p/pa)g
v=0.67 and U; =17.67

(Spilhaus, 1948; Atlas & Ulbrich, 1977)

(Courtesy of J.M. Porra)



How does DSD depend on rainfall rate?
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Shapes of pdfs of normalized diameter

p(x) — e_x (Marshall & Palmer, 1948)
+1

p(x) — (M — 1)ﬂ x”e_(“”)x (Ulbrich, 1983)
F(p+1)

32
p(X) 3 3/2K (4\/_) (Villermaux & Bossa, 2009)




Relaxing the assumption of a constant n,

n(d) =nif(d) no = kR®

n(d) =nop(x) (dYy "= ARP
no :nt/<d>
x =d/{d) B=(1-a)/(4+y)




A scaling law for drop size distributions
~ n(d,R) = Rg(d/RP)

A General Formulation for Raindrep Size Distribution r
DANIEL SEMPERE TORRES M — d n ( d ) d d
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Physical basis of Marshall-Palmer DSD?!

nature
hvsi
p ySlCS PUBLISHED ONLINE: 20 JULY 2009 | DOI:10.1038/NPHYS1340

ARTICLES

Single-drop fragmentation determines size
distribution of raindrops

Emmanuel Villermaux"?* and Benjamin Bossa'

Like many natural objects, raindrops are distributed in size. By extension of what is known to occur inside the clouds, where
small droplets grow by accretion of vapour and coalescence, raindrops in the falling rain at the ground level are believed to result
from a complex mutual interaction with their neighbours. We show that the raindrops’ polydispersity, generically represented
according to Marshall-Palmer's law (194 8), is quantitatively understood from the fragmentation products of non-interacting,
isolated drops. Both the shape of the drops’ size distribution, and its parameters are related from first principles to the
dynamics of a single drop deforming as it falls in air, ultimately breaking into a dispersion of smaller fragments containing
the whole spectrum of sizes observed in rain. The topological change from a big drop into smaller stable fragments—the
raindrops—is accomplished within a timescale much shorter than the typical collision time between the drops.







Laws & Parsons (1943), Washington DC
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Marshall & Palme

a=0

© B = 1/(4+y)
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Mueller (1962), Miami
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Summar%/\
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DISDRODB initiative

- Towards a global data base of raindrop
size distribution observations (Gionata
Ghiggi et al.)

» e .'%\2 — o {f»

GET INVOLVED! Contribute with your data, algorithms, expertise and ideas.
Contact us at disdrodb@gmail.com



mailto:disdrodb@gmail.com

Thanks for your attention!

(Victoria Roberts, 2000)

1’fUDe|ft R.Ujjlenhoet@tudelft.nl
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