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Résumé de la démarche 

 

L’objet de ce livrable est de présenter les bases méthodologiques et les outils utilisés pour 

conduire une analyse multi-échelle d’un flux géophysique : géométrie fractale, statistique de 

la turbulence et analyse multi-fractale. Ces outils ont été mis en œuvre sur les données 

scintillométriques (Cn
2) et de température collectées en continu pendant 5 semaines sur le 

campus de l’ENPC. Ce livrable a été réalisé sur la base des travaux de thèse d’Alejandra 

Castellanos-Diaz. 

 

L’analyse spectrale a montré une invariance d’échelle des deux flux sur une large gamme 

d’échelle. Les fonctions structures, quant à elles, ont démontré que ces deux séries 

temporelles sont affectées par un phénomène d’intermittence et qu’elles sont multi-fractales. 

L’analyse multi-fractale qui en résulte a montré que le Cn
2 est fortement affecté par les 

fluctuations de température, mais que d’autres champs géophysiques interviennent dans la 

genèse du flux de chaleur sensible. Ce qui reste à étudier.  

 

Par conséquent, la variabilité spatio-temporelle des flux thermiques sur la Vague Bleue Verte 

nécessite une analyse plus approfondie, nécessitant davantage de données géophysiques, telles 

que la vitesse du vent. Cela permettrait de mieux caractériser l'invariance d'échelle ainsi que 

les propriétés statistiques présentées dans ce travail. 

 

 

Summary 

 

The purpose of this deliverable is to present the methodological bases and the tools used to 

conduct a multi-scale analysis of a geophysical flow: fractal geometry, turbulence statistics 

and multi-fractal analysis. These tools were carried out on scintillometric (Cn
2) and 

temperature data collected continuously for 5 weeks on the ENPC campus. This deliverable 

was produced on the basis of the thesis work of Alejandra Castellanos-Diaz.  

 

Spectral analysis showed scale invariance of the two fluxes over a wide range of scales. The 

structure functions, for their part, demonstrated that these two time series are affected by 

intermittency and that they are multi-fractal. The resulting multi-fractal analysis showed that 

Cn
2 is strongly affected by temperature fluctuations, but that other geophysical fields are 

involved in the genesis of the sensible heat flux. What remains to be studied. 

 

Therefore, the temporal and spatial variability of thermal fluxes in the BGW requires a further 

analysis with more geophysical data, such as wind speed. This would allow to better 

characterise the scaling invariance as well as the statistical properties presented in this work. 
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1. Statistics of turbulence 

In complement of the fractal geometry presented in Deliverable 4.2, here are introduced the 

basic statistics of turbulence. Based on space and time changes of convective and mechanical 

turbulence, the eddies observed in a variety of turbulent atmospheric fluxes have different 

sizes and lifetime. This leads to atmospheric fluxes appear stochastic with structure with 

structure at all scales, and its behaviour difficult to predict. In fact, the chaotic nature of 

atmospheric turbulence is governed by the non-linearity of Navier-Stokes’s equations, for 

which no formal analytical solution has been found.  

 

The scientific community has been interested by this issue for years and has proposed 

statistical methods as an appropriate approach to describe turbulence. In this way, statistical 

properties such as the Reynolds decomposition, the statistical moments, the structure function, 

and the Fourier series are used to characterise turbulent fluxes. These statistical properties are 

quite useful for the analysis of spatial and temporal variability of an atmospheric variable 

observed at some fixed point over long periods, as well as the underlying physical processes. 

The spatial approach of the structure function will serve in this section to derive the structure 

function parameter of a scalar, which is the basis for scintillometry technique; while the 

temporal approach of the structure function will be used in Section 4 to analyse the statistical 

properties and the scaling behaviour of thermal fluxes measured at a fixed point. 

 

1.1 Reynolds’ decomposition 

A random atmospheric variable  can be generally described into two parts: the mean  and 

the fluctuating about the mean , as follows:  

 (1) 

The mean of turbulent fluctuations is zero ( ). This decomposition is applied for every 

turbulent flux in the atmosphere.  

 

1.2 Statistical moments 

The random variable  at any position  of a four-dimensional space (time or space), can be 

described with the statistical additive moments  (Moene et al., 2004). The -th order 

moments were defined by Monin & Yaglom (1971), as the mean values of products of  

values of the field: 

 (2) 

where  are integers of which the sum gives the order of the moment. Following the 

Reynolds’ decomposition of the variable : 

 (3) 
The first central moment is zero when defined the probability distribution with reference to 

the mean, and the second central moment is the variance. The general second order moment 

corresponds to the covariance ( )  and it is generally used to define three cases of a field 

(Kesteren, 2012): stationary, homogeneous and isotropic turbulence (Monin & Yaglom, 

1971): 

• For a stationary turbulent field, the mean value  is constant and invariant under 

a translation in time . Thus, the covariance  does not depend on  and 

: 

 (4) 
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• For a homogeneous turbulent field, the mean value  is constant and invariant 

under a spatial translation.  only depends on : 

 (5) 

• For the isotropic turbulent field, the mean value  is constant in all directions and 

 only depends on the distance between two points  and not on its 

direction or position: 

 (6) 

1.3 Structure function 

Since atmospheric fields are hardly stationary when the time interval between two 

measurements is too large (the mean value  is not constant), Kolmogorov introduced in 

1941 the principle of stationary increments. He argued the use of the difference 

 is more practical than . Then, the second order moment of  

(Eq.7) becomes: 

 (7) 

 (8) 
Thus, statistical moments applied to increments of a stochastic process are called structure 

function. Then, as  only depends on the time interval , the structure function, 

between  and , can be introduced as the mean of the difference of the variations of the flux 

between  and  (Tatarski et al., 1961), as follows: 

 (9) 

In conditions of stationary increments, the second order moment or covariance  is related 

to the second order structure function  by: 

 (10) 

where,  and  correspond to the statistical moments at any time and at the time 

interval , respectively. 

Apart from stationary increments, the principles of locally homogeneous and isotropic fields, 

for analysing the spatial evolution of the flux between two points of the space can be assumed 

too. Then, the structure function can be expressed as:  

 (11) 

In this way, the structure function is a statistical property than only depends on the distance .  

 

1.4 Fourier Analysis 

The Fourier analysis is a widely known method used to decompose the time-domain series of 

turbulence, into trigonometric functions such as sines and cosines. Hence, the Fourier series 

of a periodic function  can be expressed as:  

 
(12) 

where,  is the fundamental frequency ( ), and ,  and , the corresponding Fourier 

coefficients.  

Because of the periodicity of events in nature, the Fourier analysis is used with the object to 

study these amplitudes, frequencies and cycles present on the signal of the turbulent field, as 

well as its noise. For this purpose, the Fourier transform is used to express a non-periodic 

function in time  as a continuous series of harmonics, as follows: 

 

(13) 
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where,  is the imaginary unit,  is the frequency, and  corresponds to the Fourier 

transform of . Hence,  converts the signal  to its transform: 

 

(14) 

Let’s now consider a discrete version of the Fourier transform known as Discrete Fourier 

Transform (DTF), where the time series  is measured at just a finite number of times . 

So, the DTF results from evaluating the integral from 0 to time  over which the signal is 

measured:  

 
(15) 

where,  is the index of the data array of length , and  the harmonic number. The inverse 

transform is given by:  

 
(16) 

The applicability of DFT was globally extended because of its usability and the development 

of the Fast Fourier Transform (FFT) algorithm, for which the DFT has been factored and 

restructured to take advantage of the binary computation processes of the digital computer 

(Stull, 1988).  

 

Based on the Fourier transform, the power spectral density (or energy spectrum) enables to 

examine the energy distribution of a turbulent time series data over the frequencies: 

 (17) 

 

The FFT algorithm is usually used to compute . It is important to note that the FFT is 

restricted to data sizes , where  and  is the sample size. 

 

The spectral analysis is an approach used to verify the scale invariant properties of a field. In 

the case of a scaling field, the power spectral density  has a power law relationship with a 

range of frequency  (temporal analysis) or wave number  (spatial analysis) as: 

 (18) 

When this relationship is represented in a log-log scale, the spectral exponent  is deduced 

from the (absolute) spectral slope. 

 

2. Scaling invariance laws for describing fluxes 

 

In the previous section, fractals were introduced as self-similar complex patterns across 

different scales, which follows a power law and are characterised by the fractal dimension . 

Fractals have not only been useful in the study of scaling laws of urban morphology, but also 

in the analysis of scaling properties of dynamic and non-linear geophysical fields.  

 

Geophysical fields usually exhibit fluctuations that follow scaling power laws. Hence, they 

were reduced to a fractal set. However, it was found they did not have a unique scaling 

exponent. When different thresholds (singularities) were set to estimate the distribution 

pattern of a field, for each singularity a different fractal dimension appeared. This led to 

define multifractals and their properties, which serves for the analysis and modelling of fields. 

 

Since the measure of a field is generally conducted at a unique scale, the properties at other 

scales must necessarily be deduced from the measurement scale. Thus, a time series can be 
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decomposed into frequencies (or wavenumber, by involving the Taylor’s hypothesis1), in 

order to analyse the distribution of energy, and the scale invariance of the atmospheric flux 

can be detected though the spectral exponent . 

 

To better understand the statistical properties of the fluxes, let’s see now a power law that 

serves for the generalisation of the structure function of an arbitrary moment  at any point  

(i.e., integer and non-integer moments , apart than 2), for analysing of scaling multiplicative 

processes. Thus, it can be written as: 

 
(19) 

 

Under the hypothesis of constant energy flux density  and self-similar turbulent flux at small 

scales, the structure function follows a power law  as follows: 

 
(20) 

 

where,  is the scaling moment function, related to the similarity exponent  by the 

Kolmogorov theory. In the absence of corrections because turbulent intermittency of the flux, 

there is a perfect linear relation . Then, for any order moments : 

 

(21)  

 

For , the second-order moment structure function is related to the scaling exponent 

of the spectral analysis  in the following manner:  

 

 
(22) 

The intermittency is responsible of the extreme variability of the turbulent fluxes in the PBL. 

Hence, for models considering intermittency, there may be a variation of , hence the 

spectral exponent  is greater than 5/3.  

 

The intermittency could be characterised by the fully knowledge of  and . The 

relationship between  and  on logarithmic scale, allows to deduce the scaling exponent  

as the slope of the linear regression. Hence, the characterization of  over different 

moments order  enables to determinate the scaling behaviour of the flux (Calif & Schmitt, 

2014). Mono-scaling (or monofractal) processes are described by a perfect linear relation 

. By contrast, the  deviation of the linear trend indicates intermittent multifractal 

fluctuations, where  is no longer linear, but concave.  

 

Despite K41 demonstrated its utility under homogeneous and isotropic turbulence conditions, 

some works have shown the limits of these scaling laws. The intermittency of turbulent fluxes 

is characteristic of strong fluctuations at all scales. Hence, the mean value energy dissipation 

rate is not constant and insufficient to characterize the turbulence.  

 

This variability motivated Kolmogorov and Obukhov (Kolmogorov, 1962; Obukhov, 1962) to 

purpose a new theory that considers the intermittency of nonlinear dynamical systems. This 

 
1 The Taylor’s hypothesis of frozen turbulence states that temporal and spatial fluctuations of a flux can be 

related by a constant velocity. If the turbulence intensity  is small compared to the mean flux speed , the 

temporal response at a fixed point in space can be view as the result of a spatial pattern advected by the mean 

velocity . 
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theory known as K62 considers the structure function of velocity increments is a function of 

locally averaged energy flux density over a volume of linear dimension  ( ). In addition, the 

energy dissipation rate  follows a lognormal distribution, with the variance  of  

given by: 

 (23) 

where,  is a constant associated to the macrostructure of the flux,  is a universal constant, 

and  the largest external scale. The probability density function over a range of scales  can 

be written as follows: 

  (24) 

This law is known as the Refined Similarity Hypothesis (RSH) of Kolmogorov. By 

considering  from the Eq. (24), the scaling exponent function is given by: 

 (25) 

Schertzer & Lovejoy (1987) also proposed a model including the intermittency, where the 

scaling exponent function involves the scaling moment function :  

 (26) 

The function  could be characterised by only three parameters in the Universal 

Multifractal framework. 

 

3. Self-similarity extension: from fractal sets to multifractals 

Based on the fractal geometry, Parisi & Frisch (1985) introduced the term “multifractal” to 

explain the nonlinearity of the scaling exponent function. They considered a turbulent field 

(e.g., the velocity field)  on a space  dimension  (Lovejoy & Schertzer, 2013). The points 

 of the velocity field have a singularity  of order  at the point  if: 

 (27) 

This leads to say that:  

 (28) 

In this way,  is the set of points for which the field has a singularity of order , called the 

“Hölder” exponent, or singularity strength. Hence , and the set  has a fractal 

dimension . Thus, different singularities  (defined as ) are associated with 

fractal sets having different dimensions , which leads to say that  is multi-fractal. 

 

From the definition of fractal dimension and box-counting,  is nonnegative and its link with 

 is found:  

 (29) 

where,  is the codimension function (Schertzer & Lovejoy, 1987) bounded by . Hence, 

the events with low occurrence have a dimension of 0 and those with more frequency fill the 

space, the . 

 

3.1 Statistical properties of multifractal fields 

The statistical properties of a multifractal field  at a given resolution  are defined by two 

scaling laws (Lovejoy & Schertzer, 2013; Schertzer & Lovejoy, 1987, 1991): the probability 

distribution of the energy flux density  and the statistical moments; involving the 

codimension function  and the scaling moment function , respectively. 

 

The measure of the probability that  is greater than a given scaling threshold (singularity) , 

is described by the relation (Schertzer & Lovejoy, 1987):  
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 (30) 

Being  the renormalized intensity of the field at the scale-ratio  (defined in Eq. Error! 

Reference source not found.) and  the codimension function associated to a given 

singularity . 

 

Via the Mellin transform, Schertzer & Lovejoy (1987) demonstrated the probability 

distribution of Eq.33 is equivalent to the statistical moments. Hence, the scaling moment 

function  was introduced, to characterize the multifractal field :  

 (31) 

where,  is the statistical moments order and  is the  moment mean of the intensity at the 

scale ratio . 

 

3.2 Legendre Transform 

Parisi & Frisch (1985) demonstrated for deterministic multifractals, the statistical moments as 

well as the probability distribution of singularities, are equivalents through the involutive 

Legendre Transform between  and : 

 
(32) 

 

 and  functions are convex (see Figure ) and differentiable, Eq.35 becomes:  

 
(33) 

 

These relations demonstrate every moment of order  is related to only one singularity . 

Because of the conservation of flux from one scale to another, implies for : 

 (34) 

 is the “co-dimension of the mean” and it represents a characterization of the variability near 

the mean.  

 

Figure 5. Legendre transform between  and  functions. Adapted from Lovejoy & 

Schertzer (2013). 

3.3 Universal Multifractals (UM) 

As previously demonstrated, because of convexity of  and , both functions depend on 

an infinity of parameters. Nevertheless, through a multiplicative central limit theorem, 

Schertzer & Lovejoy (1987) proposed the Universal Multifractal model, for which only few 

parameters are necessary to characterize  and : 
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(35) 

 

(36) 

where ,  and  are the three basic universal multifractal parameters: 

• The mean singularity , measure the clustering of the mean intensity (i.e., the 

fractality/sparseness of the mean field), and at the same time it corresponds to the 

codimension of the mean field:  

 
(37) 

Note that for  the field is homogeneous, and for greater values of  the mean 

singularity of the field is sparseness. 

• The Lévy index , which indicates the extent of multifractality. This measures the 

mean intermittency evolve when considering singularity. The values of  varies 

between 0 and 2, being   characteristic of monofractal fields, and  

characteristic of maximal occurrence of extremes (log-normal fields).  

• The Hurst exponent , that measure the degree of non-conservation of the mean field 

(for conservative field ): 

 
(38) 

After to prove the scaling behaviour of the field and to determinate the values of universal 

parameters, the Trace Moment (TM) and Double Trace Moment (DTM) techniques based on 

the function  are generally used. 

 

3.4 Trace Moments (TM) 

The Trace Moment technique allows to calculate the function  by means of the scale 

invariance moments of order  of the conservative field  (Schertzer & Lovejoy, 1987): 

 (39) 

where,  is the  moment mean of the intensities at the scale  and  denotes the 

asymptotic equivalence. The function  is convex and it characterises the scaling 

invariance of the field (multifractal behaviour), showing the asymptotic behaviour of moment 

of order . 

 

To apply the TM method, the field must be considerate approximately uniform, and it is 

normalized assuming a mean of one, as follows: 

 (40) 

The normalized temporal data series should be divided into non-overlapping intervals of a 

certain resolution . At each resolution , the sample is up-scaling independently and the 
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moment of order  is calculated .The average moments of order  is calculated over all 

resolutions , as follows: 

 (41) 

Then, the scaling behaviour of the field can be validated as a function , by plotting the 

logarithm of  versus the logarithm of  for different  values. The slopes of the linear 

regressions correspond to the estimations of , and the value of r² is used to validate the 

accuracy of the straight-line approximation. Then, the different  values and the associated 

 allows the estimation of the empirical  function.  

 

Then, the UM parameters  and  can be estimated using the  properties of the curve, by 

estimating the first two derivates of : 

 
(42) 

 

The appearance of the  function specifies the type of scaling involving: a straight line 

implies a monofractal structure whereas a convex curve implies a multifractal structure.  

3.5 Double Trace Moments (DTM) 

This technique is a direct method to obtain UM parameters, for a conservative multifractal 

field . DTM generalise the TM technique based on a unique exponent  and the introduction 

of a second exponent .  

 

This method consists of performing a TM analysis to a renormalized -power of . For this 

purpose, firstly the field must be normalized, by arising the conservative field to the power  

at the highest resolution, in the following way: 

 (43) 

Then, the average statistical moments  also scales with the resolution : 

 (44) 

In this manner, the original field  is transformed into  and the function  into . 

Then, the th-order moments of the renormalized field remain scale invariant: 

 (45) 

 

when ,  is reduced to . The expression above can be solved from the 

universality of  function: 

 (46) 

With this expression, UM parameters can be directly estimated. In a log-log plot,  is 

plotted as a function of , for a fixed value of . The diagram allows to estimate  as the slope 

of the linear part of  and the intercept is used to determinate the parameter . 

 

A divergence of empirical functions of , deduced from the slope of  and  in 

logarithmic scale for different  values, and theoretical functions from the UM parameters 

with TM and DTM methods can occur. Then, after a given value of  the theoretical function 

of  becomes linear, leading to a departure from universal behaviour. This phenomenon is  

known as the multifractal phase transitions (Lavallée et al., 1991; Schertzer & Lovejoy, 

1989), and it could be caused by the critical moment order of divergence  and the 
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undersampling . According to Lavallée et al. (1991), in the case of one-dimensional field 

( ) and the use one data sample , the value of  is given by the formula:  

 (47) 

The critical order of divergence of moments  represents  value for which the extreme 

values of the field are dominant. Thus, the average statistical moment or order  tend to 

infinity.  

 

4. Scaling invariance behaviour of the BGW’s thermal fluxes 

In order to explore the scaling behaviour of micrometeorological measures carried out over 

the Blue Green Wave, the power spectral density and the structure function will be 

investigated. As presented in Deliverable 1.1, some data collected from techniques of ET 

measure were not exploitable and because of frequency of measure and length of campaigns, 

the number of datapoints were limited (maximum 32 data points). However, as the application 

of statistical analysis requires sufficient data, a new campaign of measurements was 

performed with the LAS MKI and the CNR4 for a longer period. Due to irregularity of 

measure with the Ch and missing values of CWS665 sensors (which is not favourable to the 

application of the FFT), the Ch and WB were not analysed. Despite the main interest of this 

research concerns BGW’s fluxes during summer months, particularly in UHI events, this long 

campaign with the LAS MKI scintillometer was conducted during the winter months of 

December 2019 and January 2020 because logistic convenience. Hence, this is considered a 

first approximation of the variability of thermal fluxes in the BGW.  

 

4.1 Data set 

The LAS MKI transmitter and receiver units were mounted over the roofs of the Carnot and 

Bienvenüe buildings, at the core of the Cité Descartes (See Figure 6). The CNR4 was located 

next to the LAS receiver, 1.5 m above the ground, to monitor radiation components and 

approximate the conditions of atmospheric stability. Finally, as optical LAS MKI is more 

sensitive to temperature fluctuations, the air temperature was monitored too.  

 

 

Figure 6. Plan view of beam in winter months. 

The elevations (including the height of buildings) are 119.15 m and 117 m for the transmitter 

and the receiver, respectively. Just like the summer set-up campaign, the effective beam 
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height was calculated through EVATION software from the elevation of units and the surface 

topography of the transect profile (see Figure 7).  

 

Figure 7. Horizontal path length and effective height of LAS during winter months. 

The path length between both units was 190 m, hence diaphragms for short-range applications 

were necessary. The EM alignment pass over the BGW, stone floor and buildings roofs. 

 

Table 1. LAS MKI Setting Experiment on winter months. 

Feature Value 

 [cm] 10 

 [m] 190 

 [m] 11.679 

 [m] 0.5 

 [m] 0 

[m] 2 

 [m] 1.4 

Duration 2019/12/18 - 2020/01/17 

The sampling frequency was 1 Hz with 10 minutes average for the LAS and 5 minutes 

average for the CNR4. The output LAS signals were controlled via the QC parameter as 

explained in Deliverable 1.1. The measurements represented in the Figure 8 shows two 

periods of time where the values of  and  exceed -50 mV and 0 V respectively: 

• 2020/01/01 03:00 to 2020/01/01 19:00 

• 2020/01/16 02:00 to 2020/01/16 10:30 

Without these disruptions, the values of  ranges between -1.5 and -2V, while  

values do not go beyond -350 mV.  
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Figure 8. LAS MKI signals: (upper) and  (middle) and  calculations (bottom). 

The QC parameters are marked with the grey dotted line. 

To understand potential causes of intensity reduction in LAS MKI measurements, the rainfall 

data were analysed in Figure 9. The rainfall intensity was collected every 5 minutes by three 

optical disdrometers of the Fresnel Platform from HM&Co Laboratory (see more details in 

Gires et al., 2018), located just next to the LAS MKI receiver unit on the roof of the Carnot 

building. A significant event of rainfall of 30 mm/h was recorded on December 27th, which 

caused slight alterations on the  signal, but that did not affect the QC parameter. The 

rest of the rainfall events were lightly or moderated without significant consequence on the 

scintillometer measure.  

 

Regarding the atmospheric conditions during the campaign, most of the days in December 

were sunny and cloudy, while in January low rates of solar radiation  were more frequent. 

Daily fluctuations of temperature were large during cloudless days (12/29 to 01/01), ranging 

from 0 to 10 °C. However, there was no specific temperature variation having an impact on 

the LAS measurements. Hence, meteorological conditions can be discarded from LAS signal 

disruption.  

 

The values of  were used to determinate the stability of the atmosphere since there are no 

measures of thermal gradient between the ground and the upper atmosphere. Thus, just like 

works of Han et al. (2019) and Kohsiek et al. (2006), measurements taken under conditions of 

 greater than 10 W/m² were considered as unstable atmosphere. 
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Figure 9. Meteorological conditions during winter months. 

4.2 Spectral analysis  

To avoid errors in the statistical analysis due to inaccuracy of SEB fluxes measures that may 

be transferred into , as well uncertainty of parameters involved in the deduction of SEB 

parameters, the spectral analysis was applied to raw data of from LAS MKI, through the 

FFT algorithm. 

 

The three methods to estimate  from the output signals of LAS, discussed in Deliverale 1.1, 

can be appreciated at the bottom of Figure 9. There is a good fit between  from  

(green) and  (yellow) ranging around 10-14 and 10-13. Concerning  from  (red), 

there are more significant fluctuations producing lower (10-15) or higher (10-12) turbulence 

intensity compared to the other estimations of .   and  was used in the analysis. 

 

The original data sets of  in Figure 8 was divided into two periods (displayed in Figure 10) 

to avoid the signal disruption of January 1st of 2020 and rainfall event on December 27th of 

2019. Since the computation of FFT uses sample length power of 2, both series of  are 

composed of 1024 data points, equivalent to 7 continuous days of measure. 

 

A good linear scaling behaviour is observed for the first period in Figure 10.c. This scaling of  

ranges from log(f)=2.5 up to 5.5, corresponding to time-scale of 14 h and 41 min, 

respectively. The spectral slope is 1.649, comparable to the slope 5/3~1.66 in the inertial 

range of isotropic and homogeneous turbulence from K41. Regarding the second period in 

Figure 10.d, a similar behaviour is observed from log(f)=3 up to 5.5, corresponding to time-

scale of 8.5 h and 41 min, slighted lower that the 5/3 of Kolmogorov.  

 

The time scale of 8.5 h represented by the dotted vertical line is associated with the period of 

daylight time or solar forcing during a winter day. The radiation from the sun is fundamental, 

as it creates buoyancy heterogeneities and unstable atmospheric conditions when MOST 

theory is fully valid to deduce . Regarding the 41 min, this is the time-scale of transition 

between unstable and stable atmosphere, this means the sunrise and sunset duration.  

 

The spectral slopes of  for both periods coincide with the assumption of Monin & Yaglom 

(1971) that power spectral density of turbulent fluctuations for a scalar follows the 5/3 law. 
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These results also agrees with the investigation of Maronga et al. (2013), where the power 

spectral density of the structure parameters of temperature  and humidity  from Large 

Eddy Simulations in the convective boundary layer (where LAS is typically operated) 

followed a power law of 5/3 in the inertial range. 

 

 

December January 

a) 

 

b) 

 
c) d) 

   

Figure 10. Two series of 10 minutes average of  in December and January and their 

respective power spectra density. 

Since the fluctuations of the refractive index are caused by eddies with different temperature 

and humidity in the PBL, and the LAS’s wavelength is mainly sensitive to temperature 

fluctuations, we will perform a spectral analysis of temperature measurements from the CNR4 

(bottom of Figure 9). The same periods of analysis that  were considered and the size of 

the data sets was the double that  as the time period of measurement was 5 min, which 

corresponds to 2048 data points represented in Figure 11. 

 

Time-scales related to solar forcing are marked in the energy spectrum of temperature: 24 h of 

diurnal cycle and 8.5 h of solar radiation. A single scaling range is observed after the 8.5 h up 

to 30 min (log (f)= 6.5). The spectral slope was 2.083 in December and 1.969 in January. This 

behaviour is associated with buoyancy effects and convective process in the atmosphere. In 

fact, these slopes are near to 11/5 scaling law predicted by Bolgiano-Oboukhov (BO) spectra, 

for a scaling stable stratified turbulence. Similar values of the spectral exponent were obtained 

by (Fitton, 2013; Karatasou & Santamouris, 2018) when analysing the scaling behaviour of 

air temperature and water temperature in a lake (Mezemate, 2014). The flattering of spectrum 
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of both series at highest frequencies (after 30 min), is related to white noise as the intensity of 

the spectrum is constant. 

December January 

a) 

 

b) 

 
c) 

 

d) 

 

Figure 11. Two series of 5 minutes average of the air temperature in December and January 

and their respective power spectra density. 

In conclusion, the scaling invariance of  and temperature were verified through this 

spectral analysis. The spectral exponents are close to 5/3 for  and 2 for the temperature, 

which indicates the fluxes is non-stationary ( , the process is nonstationary). In addition, 

the spectral analysis proves to be a statistical tool of analysis to identify main frequencies 

influencing measurements, as well as potential sources of error. Nevertheless, the power 

spectral density only represents the second-order moment statistics, and its slope is not 

enough to fully describe the scaling behaviour of the data. 

 

4.3 Structure function scaling exponent 

The structure function introduced earlier allows to characterize the fluctuations of the flux, 

through the estimation of the scaling exponent function  over several order moments .  

As we are dealing with time series, the structure function is written for time series fluctuations 

as .  

The structure function of  was estimated over 1024 data points, for both periods of 

analysis, with  and the statistical order moments  with 

increments of 0.1. Figure  shows the results of the structure function obtained of December 

and January, for  and . A single linear behaviour was observed in the range 

 up to . This confirms the scale invariance behaviour of  for both periods of 

analysis observed previously with the power spectral density in the inertial range. 
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December 

 

January 

 

Figure 12. Structure function of increments in December and January. 

The scaling exponent  was estimated from the slopes of linear regressions in Figure 12 

and was plotted in Figure 13. From the relations presented in Eq.24 and Eq.25, the estimates 

of  from  and  were compared. The results presented in the Table 2 demonstrate the 

values of  from  were higher than those obtained from the spectral exponent . The 

discrepancy between both methods is kept for the second-order moment in both periods. The 

average of  was predicted from the relation of the scaling exponent  evaluated for all the 

moments  through Eq.24. For the period of December  and for January 

. 

Table 2.  estimates of  following K41. 

  December January 

 0.51 0.424 

 0.324 0.289 

 0.822 0.665 

 0.649 0.578 

 0.248±0.1 0.139±0.1 

The non-linearity and concavity of  in Figure 13 is undisputed for both periods, indicating 

the multifractal nature of the structure parameter Cn
2. This agrees with the research of Pérez et 

al., (2014), which showed fractal dimension of surface patterns of a wavefront, measured 

through the box counting dimension, is not unique and it changed as convective turbulence is 

developed. Hence, fluctuations of Cn
2 from the BGW are not monofractal but multifractal.  

December January 
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Figure 13. Scaling exponent  of  increments in December and January. The dotted line 

corresponds to the structure function with  for linear model of turbulence K41. 

As , the structure function of temperature series was evaluated, with 2048 data points, for 

the statistical order moments  with increments of 0.1 and for each 300s interval, 

. Figure 14 plots the straight lines of the linear regression, which 

indicates the scale invariance is well respected over the range of time  up to . This 

behaviour is associated with buoyancy effects and convective processes in the atmosphere. 

December 

 

January 

 

Figure 14. Structure function of temperature increments in December and January. 

The empirical scaling exponent of the temperature for both periods of measure, estimated 

from the slopes in Figure 14, is shown in Figure . In comparison with the monofractal process 

from the classical BO theory of buoyancy-driven turbulence, it is demonstrated the deviation 

of  and the intermittent character of the temperature. For December period, the estimates 

of  from the spectral exponent  ( ) and the first-order structure function  

( ) are 0.541 and 0.674 respectively. However, for the period of January there is a 

discrepancy of 0.3 between  and .  
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December 

 

January 

 

Figure 15. Scaling exponent  of temperature increments in December and January.  The 

dotted line corresponds to the structure function with  for BO theory. 

From the results of the spectral density was proved the experimental data from the BGW are 

scaling and strongly non-conservative. The premised hypothesis the structure function follows 

a power law given by  and represents a (mono)-fractal behaviour, is not respected by 

 and air temperature. This means a unique self-similarity law does not describe the 

fluctuations of  and temperature because of intermittency, which is characterised by many 

fractal dimensions. Therefore, to fully characterize this non-linearity and scaling properties, 

the correction of intermittency given by  should be introduced, which will be 

characterised using the Universal Multifractal (UM) framework.  

 

5. Characterisation of the scale invariance properties 

The TM and the DTM technique are now applied to the experimental data from the BGW. 

The spectral slope of  and temperature, in both periods of analysis, indicates fluctuations 

are non-conservative since . Therefore, the approach of Lavallée et al. (1993) from the 

absolute values of data increments was used to transform the non-conservative fields into 

conservative (which implies ). This method was successfully applied by Stanic, (2020), 

to characterise UM parameters of spatial and temporal variability of the water balance 

components of the BGW: soil water content, rainfall intensity and drained discharge. 

 

The statistical moments  of  fluctuations, were evaluated for different values of 

, for a series length of 1024 data points. Then, we processed to display at the top of 

Figure  to check scaling. The fluctuations of  shows a good scaling given by the value of r², 

mainly for the period of December. However, for  in both periods, the value of r² is the 

lowest. 

 

The Figure  b) and c) shows the average moments  as function of the resolution  in 

logarithmic scale, with different values of  and . The accuracy of the linear regressions 

for any  is higher than 0.9 (rather better than TM), which demonstrates the scaling is well 

respected when  varies from  up to .  

The slope of the linear regression  is obtained for every value of  and presented in 

Figure  d) and e), from which  and  parameters were deduced in the range of the  market 

with the red line. In December, universality is observed in the range , while in 

January the range varies to . 
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December January 

a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 

Figure 16. Characterisation of UM parameters to experimental  data; a) and b) TM 

technique for different  values; c) and d) DTM technique with  and ; e) 

and f) Statistical moment function  for different values of , the red line represents the 

linear regression from which UM parameters are determined. 
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Table 3 presents the UM parameters (  and ) estimated through TM and DTM techniques. 

The values of  and  are similar between both periods and techniques, which suggest the 

fluctuations have comparable features. The estimates of  in both periods, demonstrate strong 

multifractality of  fluctuations, as  is nearly its maximum 2 (with both techniques). With 

regards to , the estimates are not very large, which indicates mean intensity is not very 

sparse.  

Table 3. UM parameters estimates of . 

Technique TM DTM 

Period     

December/2019 1.839 0.106 1.97 0.11 

January/2020 1.879 0.10 1.85 0.10 

By estimating the linear regression over each  in Figure 16 a) and b), the empirical function 

of  can be deduced. As well, from UM parameter estimation the theoretical function of 

 is computed. The results in Figure 17 shows there is a good agreement between 

empirical and theoretical functions for  lower than 2.5 in December, and  lower than 3 in 

January, approximatively. This divergence was assessed though Eq. (50) from the UM 

parameters deduced with DTM method. Thus,  in December and January are 3.06 and 3.43 

respectively, which is close to the values in Figure 17.  

 

The characterisation of the intermittency of temperature fluctuations, implies following the 

same procedure applied previously for . The estimates of TM and DTM over the whole 

range of scales, for December and January periods, are presented in Figure 18 and the UM 

parameters summarized in Table 4. 

December 

 

January 

 

Figure 17. Comparison between curves of  of , from the empirical value of the TM 

regression in Figure 16 a) and b), and from UM parameters and the Eq. (38). 

Table 4. UM parameters estimates of temperature. 

Technique TM DTM 

Period     

December/2019 1.702 0.055 1.625 0.056 

January/2020 1.680 0.073 1.587 0.075 

 

In both techniques, the accuracy of the linear regression over all the scale-ratio  at order 

 is not so good compared with higher values of . However, the scale invariance 



 

 23 

behaviour of temperature fluctuations is well observed over all the range of scales in the 

results of DTM. The curves of  as function of  in logarithmic scale, with  is 

presented in Figure 18 e) and f). The slope was evaluated in the range of  between 0.81 and 

1.87 for December, and between 0.65 and 1.52 for January. 

 

December January 

a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 

Figure 18. Characterisation of UM parameters to experimental temperature data; a) and b) TM 

technique for different  values; c) and d) DTM technique with  and ; e) 
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and f) Statistical moment function  for different values of , the red line represents the 

linear regression from which UM parameters are determined.  

The values of  and , are slightly different from those obtained of turbulent velocity 

measurements in the atmospheric boundary layer in Paris,  = 1.45 and C1 = 0.29 (Schmitt et 

al., 1993). However, the estimates of  are similar to the values found by Mezemate (2014) 

from water temperature data measured at different depths in the Creteil lake (Paris region).  

varies between 0.085 and 0.016, for the nearest depth to the surface of the lake (0.5m) and the 

deepest (4.5 m), respectively. In addition, the multifractal analysis conducted by Bodri & 

Cermak (2005) for two temperature series measured in boreholes in Kamchatka Peninsula 

(Russia), led to find similar values of C1 (0.097 and 0.098) and lower values  (1.32 and 1.24) 

that in the BGW.  

December 

 

January 

 

Figure 19. Comparison between curves of  of temperature, from the empirical value of 

the TM regression in Figure 16 a) and b), and from UM parameters and the Eq. (38). 

The curves of  in Figure 19 are convex in both periods which proves the statistics of the 

temperature in the BGW are multifractals. In addition,  from TM and DTM have a good 

agreement with the empirical curve of A slight deviation apparently occurs over  in 

December and  in January. According to estimation of  in December and January, the 

divergence occurs in  values of 5.86 and 5.10, respectively.  

December 

 

January 

 

Figure 20. Empirical  functions of  and temperature data measured in the BGW in 

December and January. 
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It appears reasonable to expect variability of  is close to that of the temperature as LAS 

MKI is mainly sensitive to temperature fluctuations in the horizontal path-length between 

transmitter and receiver. The empirical functions  of  and temperature in December 

and January, displayed in Figure 20, partially validate this assumption, as  of  in both 

periods is much more convex than the temperature. This may suggest  measurements are 

the results of turbulent processes additional to the heat convection, such as the advection from 

the surrounded atmosphere. Therefore, it may be useful some additional experimentation, that 

includes wind speed, to analyse the variability  and temperature fluctuations.  

Through the codimension function , the fractal dimension value can be deduced. Figure 

21.a shows the corresponding estimates of  in the framework of the codimension 

multifractal formalism, using UM parameters and Eq.39. Then, the latter is related to the 

geometrical dimension multifractal formalism (Parisi & Frisch, 1985). In the dimension 

multifractal formalism, for each singularity  the function  is linked to the codimensions 

as , and . The subscript  of  and  represents the dimension  

of the space on which the process is observed, thus  for temporal series.  

  

Figure 21. a) The codimension  function of  and temperature. b) Singularity spectrum, 

 as a function of singularities . 

The fractal dimension  was plotted as a function of the order of singularity  in Figure 

21 for  and temperature in December and January. This plot is known as the “singularity 

spectrum" or “multifractal spectrum”. Thus, multifractality is corroborated since spectrums of 

both temporal series,  and temperature, exhibit a distribution of singularities (Hölder 

exponents) and its corresponding fractal dimension. 

 

The spectrums of all temporal series in both periods are asymmetrical between  range going 

from 0.6 up to 1.1. All spectrums are left-skewed as only large fluctuations ( ) are 

evaluated. The spectrum of  in both periods has a quite similar multifractal behaviour, 

while that of the temperature is lower in December 2019 than in January 2020. Nevertheless, 

when  the spectrum of  and temperature in both periods converges to the same 

 value, which not exceed the dimension of the observing space. 

 

6. Conclusions and Perspectives 

In this chapter statistical tools to address the scaling invariance of measurements of 

scintillometry and temperature over the BGW were used. The spectral analysis, as well as the 

scaling exponent of the parameter of refraction index of air , demonstrated its scale 

invariance behaviour. The spectral analysis indicated a single scale-invariance in the time-

scale of 14-8h to 41 min with a slope close to that of K41, 1.64 in December and 1.57 in 
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January. Regarding the temperature, a linear behaviour for the whole range of scales was 

observed and the spectral exponent is close to that of BO (2.09 and 1.97).  

 

More precisely, the structure function that characterises the statistical properties of the 

fluctuations demonstrated a single scaling power law over 300s and 8.5h. In addition, the 

strong nonlinearity of the scaling exponent function  shows that  and temperature 

fluctuations are affected by intermittency and they are multifractal.  

 

The UM parameters were characterised to consider the corrections of intermittency . The 

obtained values of Lévy index  and the mean codimension  demonstrate, fluctuations of 

(  and  from DTM) and temperature (  and 

 from DTM) measured over the BGW in both periods of analysis, are 

multifractal and intermittent. The estimates of the UM parameters of the  and temperature 

remain close to those obtained in the turbulent atmospheric layer.  

 

The multifractal structure of  and temperature increments was proved through the 

estimation of , which in both cases is convex and curved. In addition, the empirical 

function  of  and temperature increments have some differences and diverge, 

indicating that although  is mainly affected by temperature fluctuations, additional 

geophysical fields would impact heat convection in the surrounded atmosphere of the BGW.  

 

Therefore, the temporal and spatial variability of thermal fluxes in the BGW requires a further 

analysis with more geophysical data, such as wind speed. This would allow to better 

characterise the scaling invariance as well as the statistical properties presented in this work. 

 

Finally, through the codimension function  and the UM parameters, the singularity 

spectrum of  and temperature was characterised, to deduce the fractal dimension of their 

fluctuations that exceed different order of singularity. 
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