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source: Web of Science
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!  Richardson (1922): energy cascade from large to small scales

! Kolmogorov (1941), Obukhov (1941): dimensional analysis, leading 
to a scaling power spectra for velocity fluctuations in k-5/3

Richardson and Kolmogorov: energy cascade

The energy cascade in turbulence
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Experimental validation of the -5/3 law of Kolmogorov

Checked in many situations 
since the 1960s

The energy cascade in turbulence



Intermittency

The energy cascade in turbulence

Batchelor and Townsend (1949): Experimental measurements of the 
dissipation: very strong fluctuations, are experimentally found, 
called « intermittency »

Obukhov (1962): locally averaged dissipation field, and 
assumption of lognormal fluctuations

Kolmogorov (1962): same hypothesis, and the 
variance depends on the log



Experimental results in Soviet Union (1963-1965): power-law correlation of the small 
scale dissipation

Gurvich and Zubkovskii (1963). Pond and Stewart (1965) 

The energy cascade in turbulence

Intermittency of the dissipation, with power-law fluctuations

Bϵϵ(r) = < ϵ(x + r)ϵ(x) > = B < ϵ2 > ( L
r )

μ

Spikes have a spatial structure



Yaglom (1966) recursive 
multiplicative cascade model:

• the first discrete cascade model 
in turbulence

• multifractal properties

Motivations: Yaglom, as Kolmogorov’s student, wanted 
to build a model compatible with:

• Kolmogorov’s hypotheses

• long-range power-law correlations of epsilon as shown 
by experimental data

The energy cascade in turbulence

Yaglom’s discrete multiplicative cascade

(i) generate lognormal statistics; 

(ii) with power-law long-range correlations 

A generic model for multiplicative cascades still today.

Gives rise to multifractal statistics



ϵ(x) =
n

∏
i=1

Wi,x

The energy cascade in turbulence

Yaglom’s discrete multiplicative cascade: properties

< ϵ(x)q > ≈ λK(q)

λ =
L
ℓ

= 2n

K(q) = log2 < Wq >

< ϵ(x)ϵ(x + r) > ≈ r−μ < γ(x)γ(x + r) > ≈ A − B log r

Scaling
K(q)=second characteristic function, or 
cumulant generating function, or scale 

invariant moment function

Power-law correlations
 intermittency parameterμ = K(2)

Logarithmic relations for the generator
  generator γ(x) = log ϵ(x)

σ2
γ = nσ2

log Wi
= (

σ2
log Wi

log 2 ) log ( L
ℓ ) = A′ log ( L

ℓ )

log-correlation

log law for the variance of , as originally assumed by Kolmogorov (1962)log ϵ



A similar cascade model in two different fields

lognormal statistics Obukhov (1962) Kolmogorov (1962)

Turbulence, for the dissipationGeology, for metal ore deposition

Krige (1951)

spatial average of a fluctuating quantity 
Aℓ(x) =

1
vol(Bℓ) ∫Bℓ(x)

ϵ(x′ )dx′ 

Obukhov (1962)
Kolmogorov (1962)

Discrete embedded multiplicative model Yaglom (1966)de Wijs (1951, 1953)

Matheron (1962)
« regionalized variables »

Logarithmic relations for the generator
  generator γ(x) = log ϵ(x) σ2

γ = A′ log ( L
ℓ )

Kolmogorov (1962)
Yaglom (1966)

de Wijs (1951, 1953)

See	also:		
Matheron’s	theory	of	regionalized	variables,	Oxford	University	Press,	2019	
Agterberg,	Geomathema<cs,	Springer,	2014



Multifractal discrete cascades

A discrete lognormal 
multifractal cascade  

 N = 216 = 65536
μ = 0.2
< ϵ > = 1

ϵ(x) =
n

∏
i=1

Wi,x

Intermittency:

localized diverging pikes (singularities) with long-range correlations

Discrete cascade models
Early proposal in geosciences: De Wijs (1951, 1953)
Early lognormal proposal in turbulence: Yaglom (1966)
Black-and-white -model: Novikov and Stewart (1964); Frisch et al. (1978)
Random -model: Benzi et al. (1984)
-model: Schertzer and Lovejoy (1984)

p-model: Meneveau and Sreenivasan (1987)

β

β

α



 Statistically, the cascade developed over a given scale ratio can be 
decomposed introducing any number of intermediary steps 

L

 ℓ

 
ΧL→ℓ = Xi

i=1

n

∏

 Multiplication of 
random variables 

 Addition of random 
variables 

 Each Xi is independent and has 
the same law: called 

«Independent and identically 
distributed - iid»  

Y = log X

 
YL→ℓ = Yi

i=1

n

∑
 Each Yi is independent and has the same 
law: called «Independent and identically 

distributed - iid»  

«Infinitely divisible»  law

Multifractal continuous cascades

semigroup property

 For a infinitely divisible random variable Y, for any integer n, we can write 

, where the  are iid random variablesY =
n

∑
i=1

Yi Yi

 Each Yi is independent and has the same law: called «Independent and identically distributed - iid»  

 Since Novikov (1994) it has been recognized that for a continuous 
cascade (in scale), i.e. a cascade that can be indefinitely densified, 
the log of the process belongs to ID distribution.

This means that continuous cascades have log-ID distributions.

Examples of models which are log-ID: 
•lognormal model (Kolmogorov 1962)
•log-stable model (Schertzer and Lovejoy, 1987; Kida 1991)
•log-Gamma model (Saito, 1992)
•log-Poisson model (She and Leveque 1994, She and Waymire 1995, 

Dubrulle 1995)

log-Infinitely Divisible cascade models



Multifractal framework in turbulence

< ϵq
ℓ > ≈ ℓ−K(q)

For the dissipation
scale invariance of moments

For the velocity

Pr(ϵℓ > ℓ−γ) > ≈ ℓc(γ) scale invariance of singularities pdf

 moment functionK(q)

 codimension functionc(γ)

< ϵq
ℓ > = ∫ ℓ−qγdp(γ) ≈ ℓminγ{c(γ)−qγ} Legendre transform

relation between moment function 
and codimension function

K(q) = max
γ

{qγ − c(γ)}

< |V(x + ℓ) − V(x) |q > ≈ ℓζ(q) scale invariance of moments

Pr( |V(x + ℓ) − V(x) | > ℓh) > ≈ ℓc(h) scale invariance of singularities pdf

 moment functionζ(q)

 codimension functionc(h)

< |V(x + ℓ) − V(x) |q > = ∫ ℓqhdp(h) ≈ ℓminh{c(h)+qh}
Legendre transform

relation between moment function 
and codimension function

Parisi and Frisch (1985) (and 
introduction of the word multifractal)

ζ(q) = min
h

{qh + c(h)}
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Two types of multifractals and two types of analysis

ϵℓ(x) =
1

vol(Bℓ) ∫Bℓ(x)
ϵ(x′ )dx′ 

Scaling properties through coarse-
graining: volume average of the 

small-scale singular field

Singular measure; positive values 
with localized pikes
Directly produced by a 
multiplicative process
Ex: dissipation in turbulence

Stochastic processes with 
stationary increments (also 
called « multiaffine » or 
« non-stationary 
multifractals »)
Mixture of additive and 
multiplicative processes
Ex: velocity, passive scalars, 
in turbulence

Scaling properties through 
increments, or convolution with a 

kernel (wavelets) that suppresses a 
local trend

< ϵℓ(x)q > = Cqℓ−K(q)

< |X(x + ℓ) − X(x) |q > = Cqℓζ(q)



Two types of multifractals and two types of analysis

ϵℓ(x) =
1

vol(Bℓ) ∫Bℓ(x)
ϵ(x′ )dx′ 

Scaling properties through coarse-
graining: volume average of the 

small-scale singular field

Singular measure; positive values 
with localized pikes
Directly produced by a 
multiplicative process
Ex: dissipation in turbulence

Since local average does not change 
the mean, scaling through coarse 

graining verifies = constant, 
hence  

< ϵℓ(x) >
K(1) = 0

< ϵℓ(x)q > = Cqℓ−K(q)

Examples of analytical expressions:

• log-Poisson model:   
(with  and )

• log-stable model:  (with 
 and )

K(q) = c[(1 − β)q − 1 + βq]
c > 0 0 < β < 1

K(q) =
C1

α − 1 (qα − q)
C1 > 0 0 < α ≤ 2



Two types of multifractals and two types of analysis

Scaling properties through 
increments, or convolution with a 

kernel (wavelets) that suppresses a 
local trend

< |X(x + ℓ) − X(x) |q > = Cqℓζ(q)

Index of non-stationarity: 

The curve  is the sum of a linear trend and a nonlinear correction.

Examples:

• for the lognormal model, the correction is quadratic 

• for the log-stable model, the correction is a power-law 
 

• for the log-Poisson model, the correction is an exponential 

H = ζ(1) ≠ 0

ζ(q)

ζ(q) = qH −
C1

α − 1 (q2 − q)

ζ(q) = qH −
C1

α − 1 (qα − q)

ζ(q) = qH − c[(1 − β)q − 1 + βq]

Stochastic processes with 
stationary increments (also 
called « multiaffine » or « non-
stationary multifractals »)
Mixture of additive and 
multiplicative processes
Ex: velocity, passive scalars, in 
turbulence
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Examples: multifractal measures

Huang	Y.,	F.	G	SchmiW,	Lagrangian	cascade	in	three-dimensional	homogeneous	and	isotropic	
turbulence,	Journal	of	Fluid	Mechanics	741,	R2,	2014

Dissipation in turbulence: Lagrangian 
data from a Direct Numerical Simulation

PDF of log-dissipation

log-law for the variance of 
the log-dissipation

Scaling and moment function



Examples: multifractal measures

SchmiW,	F.,	S.	Vannitsem,	and	A.	Barbosa:	Modeling	of	rainfall	\me	series	using	two-state	renewal	
processes	and	mul\fractals,	Journal	of	Geophysical	Research,	103,	vol.	D18,	23181-23193,	1998

Rainfall: many zeroes. Multifractal 
cascades with a fractal support

Data: intermittency with zero values

Scaling and moment function



Examples: multifractal measures

SchmiW,	F.G.	:	Con\nuous	mul\fractal	models	with	zero	values	:	a	con\nuous	
beta-mul\fractal	model,	Journal	of	Sta<s<cal	Mechanics,	Theory	and	Experiments	
P02008,	2014

Rainfall: a multiplicative model with zero 
values: a continuous -multifractal modelβ

a discrete simulation of a -modelβ
a continuous simulation of a -modelβ

continuous simulations of  
-multifractal models

β

 Aℓ(t)
 ε(t) = C.N Aℓ(t)( ) N(A) = 0 with probability 1− e−c.m(A)

else with probability e−c.m(A) :

N(A) = ec.m(A)

< eM (A) >
eM (A)

"

#

$
$

%

$
$



Examples: non-stationary multifractal series

Turbulence: comparison between the 
velocity and passive scalars

Temperature field more intermittent 
than velocity field

SchmiW,	F.G.	and	Huang	Y.	Stochas<c	analysis	of	scaling	<mes	series:	from	
turbulence	theory	to	applica<ons,	Cambridge	University	Press,	2016.	

SchmiW,	F.G.	:	Turbulence	et	écologie	marine,	Ellipses,	Paris,	2020.



Examples: non-stationary multifractal series

Climate: Greeland Ice-core

Multi-scaling from 0.4 to 40 kyr.

H = 0.24 ± 0.02

SchmiW,	F.,	S.	Lovejoy,	and	D.	Schertzer:	Mul\fractal	analysis	of	the	Greenland	ice-
core	Project	climate	data,	Geophysical	Research	LeGers,	22,	1689-1692,	1995.



Examples: non-stationary multifractal series

Fracture: scale invariance of crack surfaces

SchmiWbuhl,	J.,	F.	SchmiW,	and	C.	Scholz:	Scaling	invariance	of	crack	surfaces,	
Journal	of	Geophysical	Research,	100,	B4,	5953-5973,	1995.

Parameters: , H = 0.80
α = 1.5



Examples: non-stationary multifractal series

Finance: exchange rates

SchmiW,	F.,	D.	Schertzer,	and	S.	Lovejoy:	Mul\fractal	analysis	of	foreign	exchange	
data,	Applied	Stochas<c	Models	and	Data	Analysis,	15,	29-53,	1999.



Examples: non-stationary multifractal series

Seuront,	L.,	F.	SchmiW,	Y.	Lagadeuc,	D.	Schertzer,	S.	Lovejoy,	and	S.	Fron\er:	Mul\fractal	analysis	of	
phytoplankton	biomass	and	temperature	variability	in	the	ocean,	Geophysical	Research	LeGers,	23,	
3591-3594,	1996.	

Seuront,	L.,	F.	SchmiW,	D.	Schertzer,	Y.	Lagadeuc,	and	S.	Lovejoy:	Mul\fractal	analysis	of	eulerian	and	
lagrangian	variability	of	oceanic	turbulent	temperature	and	plankton	fields,	Nonlinear	Processes	in	
Geophysics,	3,	236-246,	1996.	

Seuront	L.,	F.	SchmiW,	Y.	Lagadeuc,	D.	Schertzer,	and	S.	Lovejoy:	Universal	mul\fractal	analysis	as	a	
tool	to	characterise	mul\scale	intermiWent	paWerns;	example	of	phytoplankton	distribu\on	in	
turbulent	coastal	waters,	Journal	of	Plankton	Research,	21,	877-922,	1999.	

SchmiW,	F.G.	:	Turbulence	et	écologie	marine,	Ellipses,	Paris,	2020.

Oceanology: comparing temperature 
(passive scalar) with biologically active 
scalar (fluorescence, proxy of 
phytoplankton concentration)

transport

biological	ac\vity

fluorescence

temperature



Examples: non-stationary multifractal series

Calif,	R.,	F.G.	SchmiW,	Y.	Huang,	Characteriza\on	of	wind	energy	fluctua\ons	using	arbitrary-order	
Hilbert	spectral	analysis,	Physica	A,	392,	4106-4120,	2013.	

Calif,	R.	and	F.G.	SchmiW,	Mul\scaling	and	joint	mul\scaling	descrip\on	of	the	atmospheric	wind	
speed	and	the	aggregate	output	power	from	a	wind	farm,	Nonlinear	Processes	in	Geophysics	21,	
379-392,	2014.	

Duran	Medina,	O.,	SchmiW	F.G.,	Calif	R.,	Mul\scale	analysis	of	wind	velocity,	power	output	and	
tora\on	of	a	windmill,	Energy	Procedia,	76,	193-199,	2015.

Wind energy: multifractal properties of the 
wind power produced

transfer function: mean power 
produced for a given wind input

wind	turbine



Another method to extract scaling exponents: EMD-HSA method 
Empirical Mode Decomposition + generalized Hilbert Spectral Analysis

Huang	Y.,	F.	G.	SchmiW,	Z.	Lu,	Y.	Liu,	An	amplitude-frequency	study	of	turbulent	scaling	intermiWency	
using	Hilbert	spectral	analysis,	EPL	84,	40010,	2008.	

Huang,	Y.,	F.G.	SchmiW,	J.-P.	Hermand,	Y.	Gagne,	Z.	M.	Lu,	Y.L.	Liu,	Arbitrary	order	Hilbert	spectral	
analysis	for	\me	series	possessing	scaling	sta\s\cs:	a	comparison	study	with	detrended	fluctua\on	
analysis	and	wavelet	leaders,	Physical	Review	E	84,	016208,	2011.	

SchmiW,	F.G.	and	Huang	Y.	Stochas<c	analysis	of	scaling	<mes	series:	from	turbulence	theory	to	
applica<ons,	Cambridge	University	Press,	2016.

original signal
residu

Mode

N=number of modes (order 
log2(number of points)

(1) Identify all local maximum (resp. minimum) extrema of  x(t) 
(2) Interpolate maximum (resp. minimum) by cubic spline to form 
upper (reps. lower) envelop: e_max and e_min            
(3) Compute the average m(t)=(e_max+e_min)/2 
(4) Extract the detail    d(t)=X(t)-m(t)
(5) Iterate on the residual 

 Dyadic filter bank



Another method to extract scaling exponents: EMD-HSA method 
Empirical Mode Decomposition + arbitrary order Hilbert Spectral Analysis

Huang	Y.,	F.	G.	SchmiW,	Z.	Lu,	Y.	Liu,	An	amplitude-frequency	study	of	turbulent	scaling	intermiWency	
using	Hilbert	spectral	analysis,	EPL	84,	40010,	2008.	

Huang,	Y.,	F.G.	SchmiW,	J.-P.	Hermand,	Y.	Gagne,	Z.	M.	Lu,	Y.L.	Liu,	Arbitrary	order	Hilbert	spectral	
analysis	for	\me	series	possessing	scaling	sta\s\cs:	a	comparison	study	with	detrended	fluctua\on	
analysis	and	wavelet	leaders,	Physical	Review	E	84,	016208,	2011.	

SchmiW,	F.G.	and	Huang	Y.	Stochas<c	analysis	of	scaling	<mes	series:	from	turbulence	theory	to	
applica<ons,	Cambridge	University	Press,	2016.

After decomposition the signal is written

Hilbert transform of each mode

Construction of an “analytical” signal

At each time step, extraction of a local amplitude A(t) 
and local frequency 

A time-frequency-amplitude analysis

Joint probability density function 
(frequency and amplitude)

Estimation of energy

This is called Hilbert 
Spectral Analysis

Example, turbulence 5/3 
spectrum:

Our contribution: 
arbitrary order HSA

Lq(ω) = ∫
∞

0
Aqp(ω, A)dA

Estimation of the multifractal moment function in the spectral space. 
Compares nicely with other methods (SF, wavelet leaders, DFA).
Less influenced by periodicities in the series.

Lq(ω) ∼ ω−ξ(q)

ξ(q) = 1 + ζ(q)



Use of cumulants

Classical scaling methods: 
•Estimate moments at different scale 
resolutions

•Display the scale invariance of the moments

•Estimate moments functions  as slope of 
a fixed moment order, over a scale range

•Extract the parameters of a given multifractal 
model from the moment function   

ζ(q)

ζ(q)

 Scale

 Moment 
q

Cumulant approach: 
•Estimate the cumulant generating function at a 
given scale 

•Extract the parameters of the multifractal model 
at this scale

•Change the scale, and display the scale-
dependence of the parameters

Advantages: a better precision for a given scale 
because the cumulant generating function is 
precisely estimated; can be used even when the 
scale invariance is not well verified: intermittency 
without perfect scaling 

Ψ(q) = log < |V(x + ℓ) − V(x) |q >

Delour	et	al.,	2001;	Eggers	et	al.,	2001;	Chevillard	et	al.,	2005;	Venugopal	et	al.,	2006.	

SchmiW	FG:	Experimental	analysis	of	cumulants	scaling	proper\es	in	fully	developed	intermiWent	
turbulence,	in	Nonlinear	Science	and	Complexity,	edited	by	A.	C.	J.	Luo,	L.	Dai	and	H.	R.	Hamidzadeh,	
World	Scien\fic,	2007,	pp.	240-246.	

SchmiW	FG,	Y	Huang,	Z.	Lu,	Y.	Liu,	N.	Fernandez,	Analysis	of	turbulent	fluctua\ons	and	their	
intermiWency	proper\es	in	the	surf	zone	using	empirical	mode	decomposi\on,	Journal	of	Marine	
Systems	77,	473-481,	2009.	

Michalec	F.G.,	SchmiW	F.G.,	Souissi	S.,	Holzner	M.,	Characteriza\on	of	intermiWency	in	zooplankton	
behaviour	in	turbulence,	European	Physical	Journal	E	38,	108,	2015.



Use of cumulants

Cumulant generating function of  :
=

This function is convex, as a second characteristic function, and can be 
developed using the cumulants:

gℓ = log |V(x + ℓ) − V(x) |
Ψ(q) = log < exp(qgℓ) > log < |V(x + ℓ) − V(x) |q >

Ψ(q) = C1q +
1
2!

q2C2 +
1
3!

q3C3 + . . . =
+∞

∑
p=1

qp

p!
Cp

The first cumulant is C1 = < gℓ > = < log |V(x + ℓ) − V(x) | >

For the log-stable model, the development is 
non-analytical and we have:

 Ψ(q) = C1q + Cαqα

At scale ,  and  can be estimated precisely by 
plotting in log-log plot   versus .

ℓ α Cα
Ψ(q) − C1q q

 Scale

α

 Scale

Cα

Evolution versus scale of the two parameters, 
for surf-zone oceanic velocity data



Large moments?

Extraction of figures from a paper (chosen 
randomly) using multifractal analysis of 

protein sequences

much	too	large	order	of	posi\ve	moment

nega\ve	moments	emphasize	very	small	
values…	precision	limita\on	of	the	data?



Divergence of moments of cascades

ϵℓ(x) =
1

vol(Bℓ) ∫Bℓ(x)
ϵ(x′ )dx′ 

Physics:	

Mandelbrot,	1974	

Schertzer	et	Lovejoy,	1987	

Maths:	

Peyrière	et	Kahane,	1976	

Kahane,	1985	

Guirvarc’h,	1987	

…	

Robert	&	Vargas,	2010	

+	many	recent	works

In the maths literature: « Gaussian 
multiplicative chaos »

Robert	&	Vargas,	2010

It is proven that moments are infinite if:

This means a power-law tail of the pdf: 


and also for the survival function 

pϵℓ
(x) ∼ x−(qD+1)

F(x) = Pr(X ≥ x) ∼ x−qD

Hyperbolic law
Fat tail; heavy tail
Pareto law
Frechet law

equal 
for q = qD



Divergence of moments of cascades

ϵℓ(x) =
1

vol(Bℓ) ∫Bℓ(x)
ϵ(x′ )dx′ 

This means a power-law tail of the pdf: 


and also for the survival function 

pϵℓ
(x) ∼ x−(qD+1)

F(x) = Pr(X ≥ x) ∼ x−qD

Schertzer	and	Lovejoy,	1992	

SchmiW,	F.,	D.	Schertzer,	S.	Lovejoy,	and	Y.	Brunet:	Empirical	
study	of	mul\fractal	phase	transi\ons	in		atmospheric	
turbulence,	Nonlinear	Processes	in	Geophysics,	1,	2/3,	
95-104,	1994	

Schertzer,	D.,	S.	Lovejoy,	et	F.	SchmiW:	Structures	in	
turbulence	and	mul\fractal	universality,	in	Small-scale	
structures	in	3D	hydro	and	MHD	turbulence,	ed.	M.	
Meneguzzi,	A.	Pouquet	and	P.L.	Sulem,	Springer	Verlag,	
137-144,	1995	

…	

Muzy	et	al,	2006

For moments larger than the threshold , 
experimental estimates are not infinite, but 
their value depend on the sampling

qD



Divergence of moments of cascades

ϵℓ(x) =
1

vol(Bℓ) ∫Bℓ(x)
ϵ(x′ )dx′ 

This means a power-law tail of the pdf: 


and also for the survival function 

pϵℓ
(x) ∼ x−(qD+1)

F(x) = Pr(X ≥ x) ∼ x−qD

Schertzer	and	Lovejoy,	1992	

SchmiW,	F.,	D.	Schertzer,	S.	Lovejoy,	and	Y.	Brunet:	Empirical	
study	of	mul\fractal	phase	transi\ons	in		atmospheric	
turbulence,	Nonlinear	Processes	in	Geophysics,	1,	2/3,	
95-104,	1994	

Schertzer,	D.,	S.	Lovejoy,	et	F.	SchmiW:	Structures	in	
turbulence	and	mul\fractal	universality,	in	Small-scale	
structures	in	3D	hydro	and	MHD	turbulence,	ed.	M.	
Meneguzzi,	A.	Pouquet	and	P.L.	Sulem,	Springer	Verlag,	
137-144,	1995	

…	

Muzy	et	al,	2006
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Divergence of moments for velocity structure functions?

Due	to	this	K62	rela\onship,	a	divergence	of	the	
order	 	for	the	dissipa\on	corresponds	to	a	
divergence	of	order	 	for	velocity	increments	
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Dissipa\on Velocity	increments
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Conclusions/PerspecDves

PerspecDves/what	is	sDll	to	be	done?	

• Turbulence:	what	rela\ons	between	Navier-Stokes	equa\ons	
(determinis\c)	and	the	mul\fractal	and	intermiWent	proper\es	
of	velocity	and	passive	scalars?		

• Cascades	and	intermiWency:	correspond	to	long-range	
proper\es.	Closure	models	(eddy-viscosity,	LES…)	do	not	take	
this	into	account.	Find	a	closure	compa\ble	with	mul\fractals?		
[SchmiW,	F.	G.:	About	Boussinesq’s	turbulent	viscosity	hypothesis:	historical	remarks	
and	a	direct	evalua\on	of	its	validity,		C.	R.	Mécanique,	335,	617-627,	2007]	

• Predic\ons	taking	into	account	the	long-range	proper\es	of	
scaling	and	mul\fractal	fields.	

• We	know	how	to	generate	con\nuous	mul\plica\ve	cascades.	
But	how	to	generate	a	mul\affine	stochas\c	process	(in	a	
«	clean	»	and	general	way?	

• Extensions	to	the	mul\-dimensional	case.

Conclusions:	

• Coarse-graining	for	measures.		

• Structure	func\ons,	wavelets,	EMD-HSA	(or	other	
methods)	for	non-sta\onary,	or	mul\-affine	fields.	

• Different	mul\fractal	log-ID	models	exist,	corresponding	
to	different	analy\cal	expressions	of	the	nonlinear	part	of	
the	curves.	

• Can	be	applied	to	many	different	fields.	

• Limita\ons	of	the	order	of	moment:	sampling	limita\on,	
or	divergence	of	moments.	Several	evidences	for	a	
divergence	of	moments	of	around	2.4	for	the	dissipa\on,	
and	of	 	for	velocity	increments	in	turbulenceqD = 7 ± 1
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