
ATMOSPHERIC
DYNAMICS

from the bottom up:-
microscale →	mesoscale →macroscale 

10-10 m < 10-6 m < 10-5m and up

Turbulence: Vertical Shear of the Horizontal Wind, Jet Streams, Symmetry Breaking, Scale Invariance and Gibbs Free Energy.
Atmosphere, 12, 1414 (2021).



KEY POINTS [1]

* Connection between microscopic and macroscopic processes

* Emergence of organized flow in a randomized (thermal) gas

* Persistence of molecular velocity after collision

* Symmetry breaking, of continuous translational symmetry

* Existence of scale invariance in atmospheric observations

* Aircraft: ER-2 & WB57F lower stratosphere / DC-8 &  G4SP upper troposphere

* GPS dropsondes: 13 km to surface of Pacific Ocean 

* Correlations with & among scaling exponents: H, C1 and 𝜶

* Intermittency C1 of temperature and J[O3]

* Scaling of wind & temperature H with jet gradients

* Correlation of H and 𝜶 for ozone inside polar vortexSlide 1



* Implications from scaling exponents

* Sources and sinks from scaling exponents

* 23/9 dimensionality and Law of Mass Action

* Entropy and Gibbs free energy from scaling

* Thermodynamics, steady states

* Vertical scaling of temperature and model cold bias

* Overpopulation of fast molecules in air 

* Multifractal scaling exponents

H, C1 and  𝜶 Conservation, intermittency and Lévy
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KEY POINTS [2]



O3 O + O2

The correspondence and coupling of the microscopic and macroscopic
processes  in the atmosphere.
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Alder & Wainwright (1970): molecular dynamics simulation of
a flux applied to an equilibrated Maxwellian population results in
the emergence of vortices on scales of 10-12 seconds & 10-8 metres.
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Equivalence 
between statistical 

thermodynamic 
and scaling 
variables.

Variable Statistical 
thermodynamics

Scaling 
equivalent

Temperature T
1/qkBoltzmann

Partition 
function

f e-K(q)

Energy E g
Entropy -S(E) c(g)

Gibbs free 
energy

-G K(q)/q
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Maxwellian Velocity Distribution
“Observed” or “MD calculation”
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Vertical Scaling of the Horizontal Wind, GPS Dropsondes
from 13 km to surface of Pacific Ocean, (21-60N,128-172W)
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Persistence of molecular velocity after collision

𝑤12=	0.406	if		m1=	m2,	otherwise	heavier	molecule	slows	less

Thermal wind equation - meteorology

As	altitude	above	tropopause	increases,	g	decreases	and	T	 increases

Barometric equation – physical chemistry

As	altitude	above	tropopause	increases,	g decreases	and	T increases
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Emergence of organized flow in a randomized gas

* Production of vorticity at scale of molecular mean free path.

* Anisotropy ubiquitous in air.

* No local thermodynamic equilibrium, no isotropic diffusion.

* Fastest molecules cause flow, average ones define temperature.

* Opposite of conventional meteorological decomposition into
an organized mean and dissipative eddies (Langevin equation).

* Red PDF velocity – black (Maxwellian) PDF velocity → Gibbs free energy .

*“Gibbs molecules” break continuous translational symmetry by 
persistence of velocity after collision.

What to do about it?

* Molecular dynamics simulation of stratospheric air.

* Experimental tests of better atmospheric observations.

* Develop better model formulations, dynamically, chemically and radiatively.
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All ER-2 ozone & nitrous oxide, 59˚N-70˚S, heavy SH weighting
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ER-2 Ozone

All ER-2 ‘horizontal’ segments >2000 s, 1987-2000

O3 sink in polar vortex: H < 5/9
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DC8 Water

All DC-8 total water, ‘horizontal’, 44˚S - 90˚S, Aug-Sep 1987

H < 5/9 indicates a sink is operative - gravitational settling of ice
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Overpopulation of high-speed molecules relative to Maxwell-Boltzmann

* Effect on spectroscopic line shapes in wings and hence radiative transfer.

* Effect on temperature, especially in upper stratosphere. [model cold bias?]

* Effect on chemical kinetics.

What to do about it?

* Experiments, e.g. vary [O3] and [H2O] with and without ozone photodissociation
while taking high resolution spectra.

* Molecular beam experiments with velocity PDF measurement in air - difficult!

* See if translationally hot O(3P) atoms accelerate atmospheric chemistry. Do they
scramble isotope fractionation?

* Effect should accelerate reactions with an activation energy, and decelerate
those with a negative temperature dependence, e.g. radical - radical recombinations.

* Molecular dynamics calculations: could cover lowest 3-4 decades of scale.
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