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Millenium problem of turbulence !
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metric radar observations of heavy

Polari

Art piece ‘Windswept’ (Ch. Sowers, rainfalls over Paris region during 2016
2012): 612 freely rotating wind spring (250 m resolution):

direction indicators to help a large - heaviest rain cells are much smaller than
public to understand the complexity of moderate ones _ _
environment near the Earth surface - complex dynamics of their aggregation

into a large front



Two centuries ... since Navier (1822)

Louis Navier Augustin-Louis Adhémar Jean Claude

(1822) Cauchy Barré de Saint-Venant Sir George Stokes

(1843)

A millenium problem raised at Ecole
Nationale des Ponts et Chaussées,
recent episodes:

Otelbaev (2013) and Tao (2015)




A century of cascades !




From scaling analysis to cascade
o processes
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:38-5  Scaling analysis

f;‘g Rem‘",f';f{;f“‘fé:;fm ~ — Passive scalar dispersion: Richardson (1926)

fﬂf{é* o a — Structure function: Kolmogorov (1941)

;2{%‘ ' — Energy spectrum: Obukhov (1941)

o — Higher order structure functions: Kolmogorov (1962), Obukhov (1962)

— Renyi dimensions: Grassberger and Procaccia (1983), Hentschel,and

(i Vebdemhes | Procaccia (1983)
W 1 I {0 R e 4 — Legendre transform to dimensions: Parisi and Frisch (1985)

o " km

P i) oot ) o e s — Fractal measures: Halsey et al. (1987)

L. Empied t.a!pn ut’!,thnd

Richardson, 1926 _

E 8
Sy « Cascade processes
0 i — B-model: Novikov and Stewart (1964), Frisch et al. (1978)
e ant ramdom  — LOg normal model: Yaglom (1966)
(multiplicative) — Limit log-normal: Mandelbrot (1974)
— a-model: S+L (1984, 1985)
— Multiplicative chaos: Kahane (1985)
2 ﬁﬁfﬁ‘éﬁﬁiﬂ?’ﬁaﬁ% L Universal multifractals/Levy multiplicative chaos: S+L
. (multiplicative) (1987a&,b, 1997)), Fan (1987)
merements — Log-Poison model: Dubrulle (1974)

Schertzer & Lovejoy, 1989b



Varenna summer school (1983)

« “Turbulence and Predictability in Geophysical Fluid
Dynamics” organised by M. Ghil, R. Benzi et G. Parisi

— a primary version of the multifractal formalism of Parisi and
Frisch (1985) was presented there after many informal
discussions. This paper concludes by: “Still the multifractal
model appears to be somewhat more restrictive than
</,f Mandelbrot’s weighted-curdling model which does
o include the logornormal case”.

5,40 /l/// — we had the opportunity to deliver a short formal presentation
g = (the conference proceedings (1985) refers to S+L (1984)):

 a small perturbation of the R-model is no longer limited to a unique
) / dimension (a—model)

< . — - « the divergence of higher order moments is rather generic in
P . cascade models

Fig.1 from S+L (1984) « the later can introduce spurious scaling, an analytical
approximation depending on a unique scaling exponent H and the
critical order & was proposed:

E&p) =pH+0(p—a)(1 —pla)

* it was shown to fit the experimental points from Anselmet et al.

(1983), see fig. 1with H = 1/3,a = 5,5.5,6




Ed’s statement to cool
down a hot debate

(Varenna, 1983)

2008 AGU
Lorenz lecture




Cascades and statistical physics

Transformation of a measure ¢ with the help of a “density” € into another measure I1 :
dll = edo

Generalisation with a non trivial limit ¢ of densities ¢, of increasing resolution: 1 = L/ -

Mellin

\

main “trick”: Legendre

log-divergence of the generator K(q) <= c(y)

I': generator = hamiltonian
q : statistical order =inverse of temperature

Z: 1st characteristic or moment generating function = partition function

K: 2nd characteristic or cumulant generating function = Gibbs free entropy
c: codimension or Kramer function = entropy
y: singularity or Holder exponent = energy



Codimension vs. Dimension formalisms

e(y) dim(A) + codim(A) = D

- codimensions easier for stochastic
processes (S+L 85, 87, & 88, M88,
92 (Kramer functions))

- convergence Vvs. degenerescence
independent of the domain
dimension

upper dim(o) < C; = €0 = 0 (degenerescence)
C, < 7':“___ Sty <D lower dim(o) > C; = Eeo = o (conservative)
= Eeg is a projector

- relations between deterministic dimensions and stochastic codimensions:
ap+y =D = flap) + c(y)

D(g) + C(q) = D;1p(q) = (¢ — DD(q); K(g) = (¢ — )C(g)



Universality

» Strong statistical universality: stable Levy variables

VnEN,Ha(n),b(n)ER:ZX n)X + b(n)

Ja € (0,2] : a(n) =n"*a<2,Vs>1:P(|X|>s)~s° (hyperbolic/Pareto tail)
a =2 : Gauss
A stable Levy X is attractive for any Y; having same type of tail:

Y,

weo a(n)

Log-Levy edX: its moments E(edX) are finite for any q >0, iff it has
only a negative Pareto tail, i.e. iff X is an extremely asymmetric/
skewed Leévy stable



Symmetries and unity roots

I=rot (1/2)

J, K =mirror symmetries

=1




Symmetries and unity roots

I=rot (1/2)

J, K =mirror symmetries

=1

s




Symmetries and unity roots

I=rot (1/2) J, K =mirror symmetries

[2=-1 K2=J2=1

Spherical geometry —> Hyperbolic geometry



2D linear Lie algebra H'=

Combining symmetries

G=dl+el+ fJ+ cK;

\‘1
1
0

0
1

el

0 )

12, R):

2l = |J,K|, 2J=|LK|, 2K=|JI]
anti-commutators:

(I,J}) ={J, K} ={K,I} =0

I?= _J°= K?’=JJK = —1

(pseudo or split quaternions)

“quaternion equation” (Hamilton, 16/10/1843)

=J=K3=1JKy =—1




Combining symmetries

2D linear Lie algebra H'= (2, R):

G =dltelt I+ ks ol = [J K], 2J=I,K], 2K =[J1]
1= Ll) (1)J, I= B _(1)J, anti-commutators:
J:{O 1J K=f OJ (I,J}={J,K}={K,I} =0
1 0] 0 -1 12— _J2 _ _K2_JJK = 1

“quaternion equation” (Hamilton, 16/10/1843)

=J=K3=1JKy =—1




Algebra of cascade generators

 Clifford algebra, dimension = 2n

— real numbers R (n=0), complex numbers C (n=1),
quaternions H (n=2) other hyper-complex numbers,
external algebras and many more!

* Clp,q : generated by operators {e’} that anti-commute
and square to plus or minus the identity:

e'e) = —ele' (i #£j) (e')? ==+l

 therefore a quadratic form Q of signature (p,q, p+q=n):

V2 = Q(v)l Q)= vi 4 V3. —|—v§ — vgﬂ — v129+2.. — v129+q

T

ex.. R=Clo:; C=Cl1:;H=Cl2
H'=1(2, R)= Clo=Cl 1
“pseudo-/split- quaternions”

" Mandelbrot set on pseudo-quaternions, S&T,2018



From algebra to group

Hyperbolic Geometry

{K, I} {1, K, I}

Hyperbolic Geometry

0> =0Q<0,0=1i0,0 ¢ R"

10

92:Q>0,0<0

/4 60
y,

= ¢ =Q>0,0>0

-\‘\
\

Exp
#

02=0<0,0=i0.0 € R~

Generalised Moivre-Euler formula: (e"%)* = cosh(af)1 + sinh(af)u

infinite number of u, u2=+1!



Stochastic Clifford?

 Statistical universality: stable Lévy vectors

Vn € N,da(n),b(n) € R :

Ja € (0,2] : a(n) = n"*a <2,Vs>1:P(X]| > s) ~ s

ZX

n)X + b(n)

a =72 : Gauss
A stable Levy X is attractive for any Y; having same type of tail:

y
nsoo  a(n)

Y. —b
Z’Lzl (TL) :d X

(hyperbolic/Pareto tail)

— classical “quasi- scalar’ case: only b is a vector like X;and Y;

— ‘real’ vector case: a and a are matrices

(S. et al., 2001



Exponentiation of Levy-Clifford algebra

 Existence ?
— Q defines a bilinear form < . >

<XV 5= (QX +Y) - Q(X) - QY))

— which defines a Laplace-Clifford transform,
— hence a second characteristic function (cumulant generating function

Eexp( < q,I'; > = Z,(q) = exp(K;(q))

finite over o+

the opposite cone to that supporting the extremely
assymetric Lévy stable component /!



Fractionnaly Integrated Flux
model (FIF, vector version)

FIF assumes that both the renomalized complex F|F simulation of a 2D
oropagator GR and force fR are known: cut of wind grjd its vorticity (color)
=1 0 N W W W
Grp *u=[r + PN A AT i -
T
—_——— SR
—1 is a fractionnal ; ; } i )t A f .
R (differential operator .| ; § E :1.\ ; 3 * ; &
results from a J AN NN N i
E  continuous, vector, ;\Q\ §§ hl ; E N
multiplicative cascade '} ® \\:I N\ e
(Lie cascade) :‘:\:\ :\:\ E i | ; } -




Surface layer complexity!

explOratorium‘“’
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Art piece ‘Windswept’ (Ch. Sowers, 2012): 612 freely o X ::::\\;2 " g E %
rotating wind direction indicators to help a large e o e

public to understand the complexity of environment

near the Earth surface Multifractal FIF simulation (S et al., 2013) of a 2D+1 cut of

wind and its vorticity (color). This stochastic model has only a
few parameters that are physically meaningful.

Both movies illustrate the challenge of the near surface wind that plays a key role in the
heterogeneity of the precipitations... and wind energy!

21



Fractionnaly Integrated Flux
model (FIF, vector version)

3D FIF wind simulation based

on quaternions

ti=1

FIF assumes that both the renomalized

propagator GG r and force fr are known:
—1 . S
: R X
-,/ ﬁ \..L'_ 1.\ ‘1
a L IR R AN
where:  fp = € < A ARERINNN
. : ’ PR UARANNURICRE AR e %, N
—1 is a fractionnal | :\ﬁ s »q%\;%?\w A “‘C\;:
R differential operator Q"\ ‘*\r-?i\-':l-'f*ﬁf‘ﬁg&?b
R i 7 SO
results from a ,'#T Wil
E continuous, vector, ‘& Im’ilf MR *'\x
multiplicative cascade O # kAL l\m
\‘:\,\ | \I*H
: f'\\w l | .

(Lie cascade)

S )
——
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C I . S&T, Earth& Space, 2020
Ch 2015, S&al. ACP, 2012,
onclusions

Fitton&al., JMI 2013

: : : : : —v
- Intermittency: a key issue in geophysics and a major -
breakthrough with multifractals in the 1980’s: —
« infinite hierarchy of fractal supports of the field singularities and Climate
* beyond commonalities significant differences of approaches e —
and applications N
* No longer limited to scalar valued fields
» multifractal operators: exponentiation from a
stochastic Lie algebra of generators onto its Lie
group of transformations e
- ex. Clifford algebra Clp q
* physically meaningful and convenient to understand, analyse «
simulate intermittent vector fields, more generally multidimensior,
systems.

=> from field physics to singularity physics

23



. S&T, Earth& Space, 2020
ConCI US|OnS Chaos 2015, S&al. ACP, 2012,
S&L, IJBC, 2011,
Fitton&al., JMI 2013
. . . L —y
Final conclusion: the Nobel Committee for Physics is right g "
to quote the saying reported by Philip Anderson (Phys. : o
Today 41 526 1988): and Cirmate.

IRAVNLUNEIJT 00 UAMIEL ML MEN IS8 N

“A real scientific mystery is worth pursuing to the

ends of the Earth for its own sake, independently of
any obvious practical importance or intellectual o
glamour.” /T,

Intermittency is without doubt such a mystery, but not
without multifaceted practical importance and numerous
corresponding contributions.

This is more than being illustrated by thousands of
communications in EGS/EGU NP since 1988. N
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Figure 1: Commutative diagram illustrating how the analytical

From geometry to analytics

T;\k =pullback of T)\ for functions

Y @ e ex.: simple scaling (e.g. Lamperti, 1962)
Dhx=x/X\ Ty =y/A"
T, T;
\ 4 w "L
X D ¢

T*j)\ =push forward of T)\

pullback transform T; is generated on the codomain X of the

field ¢ by the geometric transform T; on the domain X. - u fOI' measurces
C(X,X) » K or generalised
functions
*
1; L,

ex.: fractal measure of dimension D

Thx =x/), T*,)\/L:,LL/)\D C(X,X) Yk

Figure 3: Commutative diagram, similar to that of Fig. 1, illustrating how the
analytical pullback transform T, generates in turn the push forward T., for
measures or generalized functions u’s.



From geometry to analytics

@ -
X "X C(X,X) - K
1, T, Tj: L.,
T @ 4 * R 0 u Y
Al X X 153, T, | C(X,X) * K L i,
* T, T.
T,12 TAQ 2 Ao
~ U M
X— % C(X.X) K

Figure 5: These diagrams show how|the group property of T, propagates |in a
straightforward manner to the “pullback” transform T, (left) and then (by

duality) to the “push forward” transform T , (right).




"CASCADE
LEVELS

0 --

Polarimetric radar observations of heavy rainfalls over Paris
region during 2016 spring (250 m resolution):

- heaviest rain cells are much smaller than moderate ones
- true for their dimensions => multifractal field

- complex dynamics of their aggregation into a large front

multiplication by 4
independent random
(multiplicative)
increments

multiplication by 16
independent random
(multiplicative)
increments

|



2+Hz-dimensional vorticity equation
(O<H:<1)

Stratified atmosphere: I e (:%j’ \Z’Q’s

ov I T

D(?/Dt = (5 ﬁh)_}h

D7/Dt = (7 -V, H@y - Vo )i
D&y /Dt = (7 - Vi + @y - Vo )il

Strong interactions between local generalized scales,
= strongly non local (Euclidean) scales !

- adifficulty for direct numerical simulations ?

- easy for stochastic simulations !

29



3D Scaling Gyroscope Cascade

d o
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Figures 7: Coanparison of Ooctutions: Ga) atrnnspberic turdbulencs ar 100m (Fiion, 2013 and (b)) SGC sitmuabitinn

forn o (Chigirinskoya and Schertzer. 1994), hoth display somehow similar strong Intenmittency.

Local flux of energy:

o o)
: . , 1,. r+l
i 2a (i)- l 2aT (D a (i) a ()+] a a ()
€, = - S Ky — ”1[ |y" rel }‘:x—r+l[ Im(u, —")+(-1) k,,_,'an Im(u, , )
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Mr Jourdain and Lie cascades

 Levi decomposition of any Lie algebra into its radical
(good guys!) and a semi-simple subalgebra (bad guys!),
e.g..

[(2,R) = R1®s sl(2, R)
What is trickier:
* large number of degrees of freedom (dim?)
* |og divergence with the resolution
* universality:
[ evy multivariates, unlike Gaussian mutivariates, are
non parametric (*)
e asymmetry of Levy noises to have convergent statistics,

e.g..

Vn e N,VX >0: exp(X) > X" /n!

(S&L, 95, T&S 96)

(*) limitation of anamorphosis transform and/or geostatistics 31



Mr Jourdain and Lie cascades

What is general and theoretically straightforwara:
[ exp : Lie algebra —— Lie group

calar valued cascade: R?--> R+

Lie group: smooth manifold

Lie algebra: tangent space to the
group at the identity

therefore a vector space with a skew
product that satisfy the Jacobi
identity:

[Xa [Yv ZH + [Y7 [Za XH + [Zv [Xv YH =0

exemple: commutator of matrices

X, Y] =XY -YX (X, Y] =0=exp(X +Y) =exp(X)exp(Y)
32



Clifford algebra

« An important family of Lie algebras of operators:
— their dimension: 2n

— generalizes real numbers R (n=0), complex numbers C (n=1), quaternions H (n=2)
and other hyper-complex numbers, external algebras and more!

» Cly,q has a basis {e7} whose vectors anti-commute and square to plus or
minus the identity:

e'e) = —ele' (i # j) (e)? = +1

* it is generated by a n-dimensional vectorial space V={v} of operators and a
quadratic form Q, of signature (p,q, p+q=n), which can be put into the
canonical form:

v = Q)1 Qv) = vi + 3.+ ’012) - U;29+1 - U§+2-- - U129+q

exX.. R=Clo; C=Cl1:; H=Cl2
H'=1(2, R)= Clko=Clh1 “pseudo-/split- quaternions”



Clifford algebra

Clifford algebra are
- graded algebra (see figure)
- double algebra:
- 2 multiplications
gt _ super algebra (! ):

ClLV,Q) =CI°(V,Q) ® Cl (V,Q)
for real algebra:
Cly (R) = Cly q—1(R) for ¢ >0
Cly (R) = Clyp-1(R) for p >0

- RCCCHCO
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