Multifractals, Intermittency, Spectra and Climate Variability Across Scales

Shaun Lovejoy, Physics, McGill U., Montreal, Canada

EGU NP Campfire, January 18, 2022
A range of a billion: 0.1mm – 10,000km
Range in time scales:
a billion billion:
0.001s – 4.5 billion years

In this plot: range of scales \(>10^{17} \)
How to understand variability over range of billions (space), billion billions (time)?

Answer 1: (Still) dominant Scalebound view: Ideological and Qualitative
"Educated Guess" Mitchell’s (1976)

Murray Mitchell:

- Quasi-periodic processes dominant
- Uninteresting = white noise background
“Artist’s Rendering” (2002-2020)
“Mental Model” 2015

"Inspired by Mitchell":
National Oceanographic and Atmospheric Administration (NOAA) website 2015
Relative spectrum after “removal of background” by dividing by $1/\omega$ spectrum
The scalebound view over time

Educated Guess (1976)

Artist’s Rendition (2002, 2020)

Mental Model (2015)

Conceptual Landscape (2021)

Background: not relevant/important, ignored
How to understand variability over range of billions (space), billion billion (time)?

Answer 2:
Scaling view:
Taking the data (and background) seriously

Quantitative
The impact of data

Scaling of spectra
2000-2010: Planetary scale Horizontal Scaling

\[E(k) = k^{-\beta} \]

Satellite: TRMM visible, IR, 1000 orbits

Satellite: TRMM microwave, 1000 orbits

Aircraft: 24 legs

Reanalysis: ECMWF interim 700 mb, ±45°, 1 year

2016: Earth Versus Mars

Comparing spectra from reanalyses

Earth

Mars

"solar system" universality
1976 versus 2015: Educated Guess versus data

\[E(\omega) \approx \omega^{-\beta} \]

\[\beta = 1.8 \]

Murray Mitchell:
- Quasi-periodic processes dominant
- Uninteresting = white noise background

Mitchell on his head:
- Most variability in wide range scaling processes,
- Quasi-oscillatory processes superposed

L 2015: A voyage through scales, a missing quadrillion and why the climate is not what you expect, *Climate Dynamics*
The data after “background removal”

2021 versus 2015: Conceptual Landscape versus data

Scaling spectrum

Total variance is proportional to the area (years)$^{-1}$ ω
Space-time “Stommel” diagrams

Scalebound view

Ocean 1963
Stommel 1963

Atmosphere 1976
Orlanski 1976
Space-time Diagrams in 2020

From Ghil, Lucarini 2020 (courtesy D. Chelton)
Space-time Diagrams: The impact of scaling

Anisotropic extension of Kolmogorov law

\[\Delta v \approx \varepsilon^{1/3} l^{1/3} \]

Horizontal only

Horizontal extent

Energy rate density

Velocity Fluctuation

Atmosphere
\[\varepsilon \approx 10^{-3} \text{W/kg} \]

Ocean
\[\varepsilon \approx 10^{-8} \text{W/kg} \]

Lifetime

\[\tau = l^{2/3} \varepsilon^{-1/3} \]

10 days: weather - macroweather transition

6 months: ocean - weather - macroweather transition

Largest scale on earth (20,000km)

10 days: weather

6 months: ocean

Slope 2/3

Updated from Ghil, Lucarini 2020 (courtesy D. Chelton)
2012: Impact of data and scaling:
1400 Geostationary IR images ((x, y, t): 1000x1000x1400 pixels)

- Perfect scaling (with finite size effects)
- Diurnal peak
- -1.5 reference slope

$P(\lambda^{-1}(k, \omega)) = \lambda^s P((k, \omega))$
Accurate space-time scaling

$P(\omega, k) \propto \langle |\tilde{I}(\omega, k)|^2 \rangle$
Fluctuations, Wavelets

\[\langle \Delta T(\Delta t) \rangle \approx \Delta t^H \]

Mean fluctuation

Fluctuation (defined by wavelets...)

Fluctuation exponent
New simple technique (re)discovered in 2012: Fluctuation analysis

Scaling regimes

Based on Haar wavelets (1910)

Lovejoy 2013
Multifractality 1:

Intermittency

Spikes
Multifractality, Intermittency: Time

Veizer 553 kyr
Zachos 5,000 yr
GRIP 85 yr
ECMWF 1 month
Montreal 1 hour
Lander 1 hour
Thermistor 0.067s

All series 1000 points

ΔT / ΔT

p=10^{-6} p=10^{-9} p=10^{-3}

Veizer
Zachos
GRIP
ECMWF
Montreal
Lander
Thermistor

MC mC C M W W W
Multifractality, Intermittency: Space

180 points,
(2° at 45N, 140 year average)

H > 0

360 points,
(1° at 45N, 1 month average)

360 points,
(1° at 45N, 1 day average)

1000 points,
(280m, aircraft)
Fluctuations and intermittency

\[
\Delta T(\Delta t) = \phi_{\Delta t} \Delta t^H
\]

\[
\left\langle \Delta T(\Delta t)^q \right\rangle = \left\langle \phi_{\lambda}^q \right\rangle \Delta t^{qH} \propto \Delta t^{-(K(q)+qH)}
\]

\[
\xi(q) = qH - K(q)
\]

\[
\left\langle \phi_{\lambda}^q \right\rangle = \lambda^{K(q)}; \quad \lambda = \tau / \Delta t
\]

\[
\left\langle \Delta T(\Delta t) \right\rangle / \left\langle \Delta T(\Delta t)^2 \right\rangle^{1/2} \propto \Delta t^{K(2)/2} \approx \Delta t^{C_1}
\]

Mean/RMS

=0 for Gaussian processes
Macroweather spatial and temporal intermittency

Temperature changes (K)

Low intermittency (low “spikiness”)

High intermittency (high “spikiness”)

Space: 60° N, 1990, 2° resolution, annually averaged
(Haar) Fluctuations

Space (units, degrees longitude)

\[
\left\langle \left(\Delta T \left(\Delta x \right) \right)^2 \right\rangle^{1/2}
\]

\[
\left\langle \left| \Delta T \left(\Delta x \right) \right| \right\rangle
\]

\[H_{\text{space}} = 0.45\]

Converging lines high intermittency

Parallel lines low intermittency

180° latitude

Log$_{10} \Delta t$

2 months

Log$_{10} \Delta x$

4° latitude

H$_{\text{time}} = -0.20$

100 yrs

Anthropogenic warming

top are spatial temperature fluctuations, bottom temporal at equator
Multifractal interpretation

\[\Pr(\gamma' > \gamma) \approx \lambda^{-c(\gamma)} \]

\[\gamma_{\text{max}} = \frac{\text{Log}|\Delta T|/|\Delta T|}{\text{Log}\lambda} \]

\[c(\gamma_{\text{max}}) = 1 - d(\gamma_{\text{max}}) = 1 - 0 = 1 \]

\[\text{Theory: } \gamma_{\text{max}} = 0.43 \]

\[d(\gamma_1) = 1 - c(\gamma_1) \]

\[d(\gamma_2) = 1 - c(\gamma_2) \]

\[p_{\text{Gauss}} = 10^{-6} \]

\[\lambda = \text{largest/smallest} = 360 \]

Gradient

\[\frac{|\Delta T|}{|\Delta T|} = \lambda^\gamma \]

\[|\Delta T| = \lambda^\gamma \]

(weather, space)
Multifractality 2: Cascades
Cascades

Generic statistical behaviour:

\[
\langle \mathcal{E}^q \rangle \approx \lambda^{K(q)}
\]

Scale invariant

Statistical averaging

Resolution: ratio \(\lambda = L/l \)

\(\lambda \)

\(K(q) \)

\(q \)

\(\mathcal{E} \)

\(L \)

\(l \)

\(S+L \ 1987 \)

= multifractal
Intermittency, multifractality (sparse, “spikes”)

.....the exponents C_1, α

Statistics of the “spikes”

$$\frac{|\Delta T|}{|\Delta T|} = \lambda^\gamma$$

$$\left\langle \varepsilon_{\lambda}^q \right\rangle = \lambda^{K(q)}; \quad \text{Pr}(\varepsilon > \lambda^\gamma) \approx \lambda^{-c(\gamma)}$$

$$c(\gamma) = \max_q (q\gamma - K(q))$$

Legendre transformation
(Parisi and Frisch 1985)

$$K(q) = \max_\gamma (q\gamma - c(\gamma))$$

Characterization near the mean:

$$C_1 = K'(1)$$

α and Universal multifractals
(Parisi and Frisch 1985)

$$K(q) = \frac{C_1}{\alpha - 1} (q^\alpha - q); \quad c(\gamma) = C_1 \left(\frac{\gamma}{C_1 \alpha'} + \frac{1}{\alpha} \right)^{\alpha'}$$

$$\frac{1}{\alpha} + \frac{1}{\alpha'} = 1$$

$$0 \leq \alpha \leq 2$$
Empirical analysis: Estimating fluxes from the fluctuations

Multifractal cascade equation:

\[\langle \varphi^q \rangle = \lambda^{K(q)} \]

\[\Delta T = \varphi_{\Delta t} \Delta t^H \]

Fluctuations:

Estimating the fluxes from the fluctuations

\[\varphi' = \frac{\varphi_\lambda}{\langle \varphi_\lambda \rangle} \approx \frac{\Delta T (\Delta t)}{\langle \Delta T (\Delta t) \rangle}; \quad \lambda = \frac{\tau}{\Delta t} \]

Normalized flux at resolution \(\lambda \)

The “spikes”

\[M_q = \langle \varphi'^q \rangle \]

“Trace moments”

= The statistics of the spikes at different scales

Estimate at finest resolution, then degrade to intermediate resolutions by averaging

outer cascade scale

"Trace moments"
Early evidence of cascades:
Precipitation 1987

(70 Radar Scans, Montreal, horizontal 3 weeks of rain data)

Cascade prediction:

\[
\frac{\langle Z^q \rangle}{\langle Z \rangle^q} = \lambda^{K(q)}
\]

\[
\lambda = \frac{L_{\text{eff}}}{L_{\text{res}}}
\]

\[
M = \frac{\langle Z^q \rangle}{\langle Z \rangle^q}
\]

Schertzer and Lovejoy 1987
Tropical Rainfall Measuring Mission

TRMM: 10^9 over 10 years
Scale-dependent TRMM PR Attenuation Corrected Reflectivity Factor $[\lambda_Z]$ (1176 consecutive orbits -- ~70 days)

$Z_\lambda \equiv$ scale-dependent, attenuation corrected, reflectivity factor over 250 m thick layer just above surface

$M_\lambda = \frac{\langle Z_\lambda^q \rangle}{\langle Z_\lambda \rangle^q} \equiv \lambda^{K(q)}$ scale-dependent normalized moment

$\lambda = \frac{L_{Earth} (20000 \text{ km} \approx \pi r_e)}{L_{res}} \equiv$ normalized distance scale

$q \equiv$ fractional moment

Lovejoy et al. 2008

residual variability at Earth size

20,000 km

1000 km

100 km

4.3 km

Spurious curvature of the support (q=0)
$M_q \approx \lambda^{K(q)}$

Cascades horizontal

20CR 45°N, zonal

EW direction

EW wind

NS wind

Temp

humidity
\[M_q = \left\langle \epsilon^q \right\rangle \]

Flux resolution \(\lambda \)

\[M_q \approx \lambda^K(q) \]

Predictions of cascade models

Chen, Lovejoy and Muller 2016
Earth versus Mars:

nearly identical multifractal cascades

<table>
<thead>
<tr>
<th></th>
<th>Mars at 83% of Surface Pressure</th>
<th>Earth at 69% of Surface Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>V</td>
</tr>
<tr>
<td>(C_1)</td>
<td>0.078</td>
<td>0.075</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1.97</td>
<td>1.98</td>
</tr>
<tr>
<td>(L_{eff}) Ratio</td>
<td>0.42</td>
<td>0.51</td>
</tr>
</tbody>
</table>

U = Zonal Wind, V = Meridional Wind, T = Temperature

Data for Earth are from the ECMWF Reanalyses: Lovejoy and Schertzer (2011)
Energy budget

TRMM satellite data, ≈1000 orbits

Energy source
Visible
- q=2
- q=1.6
- q=1.2
- q<1

Energy sink
thermal IR
- 20000 km
- 10 km
Horizontal cascades from 24 aircraft legs (11-13km)

Fields that are relatively unaffected by the trajectories
Governing Equations and Numerical Weather Prediction Models
Governing atmospheric Equations

\[
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t} & = -(\mathbf{u} \cdot \text{grad})\mathbf{u} - 2\Omega \times \mathbf{u} - \alpha \text{grad} p - \text{grad} \Phi + \mathbf{F} \\
\frac{\partial T}{\partial t} & = -c_v(\mathbf{u} \cdot \text{grad})T - \frac{p}{\rho} \text{div} \mathbf{u} + Q \\
\frac{\partial \rho}{\partial t} & = -(\mathbf{u} \cdot \text{grad})\rho - \rho \text{div} \mathbf{u} \\
p & = \rho R T
\end{align*}
\]

Important property: Scaling symmetry

Atmospheric laws \quad \text{Anisotropic blowup} \quad \lambda^H \quad \text{(Atmospheric laws)}

Factor \lambda

Conservation of momentum
Conservation of energy
Conservation of matter
Equation of state
Global GEMS Model 00h (Numerical Weather Prediction Model)

Analysis of four months U, T at 1000 mb

(48 h forecasts are almost the same)
Summary
Horizontal spatial Scaling exponents

\[\Delta I = \varphi \Delta x^H \]
\[\langle \varphi_x^q \rangle = \lambda^{K(q)} \]
\[\lambda = \frac{C_1}{\alpha - 1} \frac{q^\alpha - q}{\Delta x} \]
\[E(k) \approx k^{-\beta} \]

L+S 2013

State variables
- \(u, v \)
- \(w \)
- \(T \)
- \(h \)
- \(z \)

<table>
<thead>
<tr>
<th>State variables</th>
<th>(C_1)</th>
<th>(\alpha)</th>
<th>(H)</th>
<th>(\beta)</th>
<th>(L_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u, v)</td>
<td>0.09</td>
<td>1.9</td>
<td>1/3, 0.77</td>
<td>1.6, 2.4</td>
<td>14 000</td>
</tr>
<tr>
<td>(w)</td>
<td>(0.12)</td>
<td>(1.9)</td>
<td>(−0.14)</td>
<td>(0.4)</td>
<td>(15 000)</td>
</tr>
<tr>
<td>(T)</td>
<td>0.11, (0.08)</td>
<td>1.8</td>
<td>0.50, 0.77</td>
<td>1.9, 2.4</td>
<td>5000 (19 000)</td>
</tr>
<tr>
<td>(h)</td>
<td>0.09</td>
<td>1.8</td>
<td>0.51</td>
<td>1.9</td>
<td>10 000</td>
</tr>
<tr>
<td>(z)</td>
<td>(0.09)</td>
<td>(1.9)</td>
<td>(1.26)</td>
<td>(3.3)</td>
<td>(60 000)</td>
</tr>
</tbody>
</table>

Precipitation
- \(R \)

<table>
<thead>
<tr>
<th>Precipitation</th>
<th>(\varphi)</th>
<th>(\lambda)</th>
<th>(L_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>0.4</td>
<td>1.5</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Passive scalars
- Aerosol concentration

<table>
<thead>
<tr>
<th>Passive scalars</th>
<th>(C_1)</th>
<th>(\alpha)</th>
<th>(H)</th>
<th>(\beta)</th>
<th>(L_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosol concentration</td>
<td>0.08</td>
<td>1.8</td>
<td>0.33</td>
<td>1.6</td>
<td>25 000</td>
</tr>
</tbody>
</table>

Radiances
- Infrared
- Visible
- Passive microwave

<table>
<thead>
<tr>
<th>Radiances</th>
<th>(C_1)</th>
<th>(\alpha)</th>
<th>(H)</th>
<th>(\beta)</th>
<th>(L_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrared</td>
<td>0.08</td>
<td>1.5</td>
<td>0.3</td>
<td>1.5</td>
<td>15 000</td>
</tr>
<tr>
<td>Visible</td>
<td>0.08</td>
<td>1.5</td>
<td>0.2</td>
<td>1.5</td>
<td>10 000</td>
</tr>
<tr>
<td>Passive microwave</td>
<td>0.1–0.26</td>
<td>1.5</td>
<td>0.25–0.5</td>
<td>1.3–1.6</td>
<td>5000–15 000</td>
</tr>
</tbody>
</table>

Topography
- Altitude

<table>
<thead>
<tr>
<th>Topography</th>
<th>(C_1)</th>
<th>(\alpha)</th>
<th>(H)</th>
<th>(\beta)</th>
<th>(L_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude</td>
<td>0.12</td>
<td>1.8</td>
<td>0.7</td>
<td>2.1</td>
<td>20 000</td>
</tr>
</tbody>
</table>

Sea surface temperature
- SST (see Table 8.2)

<table>
<thead>
<tr>
<th>Sea surface temperature</th>
<th>(C_1)</th>
<th>(\alpha)</th>
<th>(H)</th>
<th>(\beta)</th>
<th>(L_{\text{eff}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST (see Table 8.2)</td>
<td>0.12</td>
<td>1.9</td>
<td>0.50</td>
<td>1.8</td>
<td>16 000</td>
</tr>
</tbody>
</table>

Summary
- \(\alpha \): 1.5 – 1.9
- \(C_1 \): range 0.08 - 0.12... except precipitation!
- \(L_{\text{eff}} \): outer scale \(\approx 20,000\)km
Empirical Conclusions of planetary scale horizontal analyses

1) Multifractal scaling (including spectra) with outer scale close to the scale of the planet is respected to within ±1% to ±2% for moments up to order q=2, up to 5000km.

2) It is accurately respected by
 a) remotely sensed radiances
 b) Reanalyses
 c) Aircraft data
 d) Numerical weather prediction models
 e) On Mars: (same multifractal exponents)

How is this possible?!
Which symmetry is primary: isotropy or scaling?

Isotropy first – then scaling

Motivation:
- the simplicity of isotropic theory
- theoretical approximations that confine the effects of gravity (buoyancy) to small scales

2-D isotropic
("Quasi-geostrophic") turbulence

$D_{el}=2$

Only Scaling (anisotropic)

Motivation:
- Scaling of the governing equations
- gravity acts at all scales
- numerical models, data

3D isotropic turbulence

$D_{el}=3$

≈ 10km
Anisotropy: the vertical

Velocity structure functions 237 drop sondes

No Kolmogorov 3D isotropic turbulence above 5m!

Log$_{10}\langle|\Delta v_x|\rangle$

Log$_{10}|u(z+\Delta z)-u(z)|$

$H=1$: Constant Brunt-Vaisala frequency, quasi-linear gravity waves, or pseudo potential vorticity

$H=3/5$: Bolgiano-Obukhov value

$H=1/3$: Kolmogorov, 3D isotropic turbulence

Lovejoy, S., S. Hovde, A. Tuck, D. Schertzer, 2007
Vertical cascades:
Thermodynamic fields (Dropsonde data)

\[M = \left\langle \phi_\lambda^q \right\rangle / \left\langle \phi^q \right\rangle \]
\[M_q \approx \lambda^{K(q)} \]
Vertical cascades: lidar backscatter

From 10 airborne lidar cross-sections near Vancouver B.C.

Horizontal cascade

Vertical cascade

\[M = \frac{\langle \delta I^q \rangle}{\langle \delta I^1 \rangle^q} \]

- \(M = \frac{C_1}{\lambda^q} \)
 - \(C_1 = 0.076 \)
 - \(q = 1, 1.6, 2 \)

- \(M = \frac{C_1}{\lambda^q} \)
 - \(C_1 = 0.11 \)
 - \(q = 1, 1.6, 2 \)

L, Tuck, Hovde, S, 2009
The physical scale function and differential scaling

\[|\Delta r| \rightarrow \|\Delta r\| \]

Usual distance (=vector norm)
Scale function (scale notion)

Scale symmetry
\[\|\lambda^{-G} x\| = \lambda^{-1} \|x\| \]

"canonical" scale function:
\[\|(\Delta x, \Delta z)\| = l_s \left(\left(\frac{\Delta x}{l_s} \right)^2 + \left(\frac{\Delta z}{l_s} \right)^{2/H_z} \right)^{1/2} \]

\[G = \begin{pmatrix} 1 & 0 \\ 0 & H_z \end{pmatrix} \]

Isotropic function
\[H_z = 1 \]

Vertical sections

Anisotropic physical scale function
\[H_z = 5/9 \]

Bolgiano-Obhukhov

Kolmogorov

Sphero-scale

S+L 1985
The 23/9D model

\[D_{el} = 2 \]

\[\Delta v \Delta x \approx \varepsilon \frac{1}{3} \Delta x^{\frac{1}{3}} \]

\[\Delta v \Delta z \approx \phi \frac{1}{5} \Delta z^{\frac{3}{5}} \]

\[H_z = \frac{1}{3} / \left(\frac{3}{5} \right) = \frac{5}{9} \]

The 23/9D dynamics:

\[\text{Kolmogorov} \]

\[\text{Bolgiano-Obukhov} \]
Anisotropic, Stratified Scaling

Stochastic

5km

Blow up X 2.9 (each)

Isotropic

Total: X5000

1 m

$H_z = 1$

$H_z = \frac{5}{9}$
14500 aircraft flights: 5-5.5km altitude, 2009, US (TAMDAR data)

$$\langle |\Delta v(\Delta x, \Delta z)|^2 \rangle \ (\text{m/s})^2$$

Purple = theory
Black = measurements

Longitudinal

Transverse

Velocity structure function
$$\langle \Delta v^2 (\Delta x, \Delta z) \rangle = C \| (\Delta x, \Delta z) \|^{\xi(2)}$$
$$\xi(2) \approx 0.80$$

Canonical scale function
$$\| (\Delta x, \Delta z) \| = \left(\left(\frac{\Delta x}{l_s} \right)^2 + \left(\frac{\Delta z}{l_s} \right)^{2/H_z} \right)^{1/2}$$
$$H_z \approx 0.57 \pm 0.01$$

(Theory: $5/9=0.555...$)

Pinel L+S, 2012
Empirical estimates of H_z:

Aircraft compared to drop sondes

<table>
<thead>
<tr>
<th>T</th>
<th>Logθ</th>
<th>h</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47±0.09</td>
<td>0.47±0.09</td>
<td>0.65±0.06</td>
<td>0.46±0.05</td>
</tr>
</tbody>
</table>

L+S, 2013

14500 aircraft trajectories: $H_z = 0.57±0.01$ (Pinel, L+S 2012)

Lidar aerosol cross sections: $H_z \approx 0.53±0.02$ (Lilley, L+S, Strawbridge, 2008)

16 Clousat orbits, radar reflectivity: $H_z = 0.56±0.04$ (L+S, Tuck 2009)

Historical development of GCM’s: $H_z \approx 5/9$ (L 2019)

$\approx 10^6$ CloudSat cloud heights, thicknesses: $H_z = 0.53±0.02$ (L 2021)

Conclusion:
The $D_{el} = 2+Hz=23/9= 2.55$ model is well supported by diverse data.
New and old results on the divergence of moments at high Re turbulence

Theoretical prediction of multifractal processes

\[
\Pr(\Delta v > s) \approx s^{-q_D}
\]

Large threshold \(s \)

\[\langle \Delta v^q \rangle \to \infty; \quad q > q_D \]

\[
K(q_D) = D(q_D - 1)
\]

Multifractal theory
(Mandelbrot 1974, Kahane and Peyriere 1976, S+L 1983)
Wind (Vertical direction)

Horizontal wind in the, vertical From Radiosondes

\[
\Pr\left(\Delta v > s\right) \approx s^{-q_{D,v}}
\]

\[q_{D,v} = 3q_{D,\varepsilon} \approx 5\]

\[
\varepsilon = \Delta v^3 / \Delta x
\]

Wind (Horizontal direction)

Horizontal wind (aircraft data)

\[
\Pr\left(\varepsilon > s\right) \approx s^{-q_{D,\varepsilon}}
\]

S+L 1985
Wind fluctuations, time, 10 Hz, (sonic anemometer)

Schmitt, S+ L, Brunet, 1994

Aircraft data at 40, 80 m separation

L+S, 2007
Wind tunnel turbulence

\[\Pr \left(\frac{\Delta v}{v_{RMS}} > s \right) \]

Theory

- DR: \(\varepsilon \propto \Delta v^2 \)
- IR: \(\varepsilon \propto \Delta v^3 \)

\[\frac{q_{D,v,DR}}{q_{D,v,IR}} = \frac{3}{2} \]

Empirical: \(7.7/5.4 \approx 1.43 \)

Inertial range (IR)

- \(q_{D,v,IR} \approx 7.7 \)

Dissipation range (DR)

- \(q_{D,v,DR} \approx 5.4 \)

[100x80]2013
Conclusion of all studies: $q_{Dv} \approx 5$
Generalized Scale Invariance
Scale functions in linear GSI (position independent)

Isotropic (self similar)

\[T_\lambda = \lambda^{-G} \]

\[
G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

Scale functions

\[
\left| \lambda^{-G} \mathbf{r} \right| = \lambda^{-1} |\mathbf{r}|
\]

Stratification dominant (real eigenvalues)

\[
G = \begin{pmatrix} 1.35 & 0.25 \\ 0.25 & 0.65 \end{pmatrix}
\]

Self-affine

Scale isolines in red \(|\mathbf{r}| \) = constant

Rotation dominant (complex eigenvalues)

\[
G = \begin{pmatrix} 1.35 & 0 \\ 0 & 0.65 \end{pmatrix}
\]

\[
G = \begin{pmatrix} 1.35 & -0.45 \\ 0.85 & 0.65 \end{pmatrix}
\]

S+L 1985
Changing G

$$G = \begin{pmatrix} 1 - i & -j \\ j & 1 + i \end{pmatrix}$$
Fly by of anisotropic (multifractal, cascade) cloud
Cascades from localized to increasingly unlocalized structures:

$H_{\text{wav}} = 1/3 - H_{\text{tur}}$
Conclusions

1) Temporal Scaling defines the five main dynamical dynamical regimes: weather, macroweather, climate, macroclimate, megaclimate.

2) Scaling allows for a quantitative understanding of the atmosphere whereas usual scale bound approaches are qualitative and do not agree with the data (error 10^{15}).

3) Origin of scaling is the (anisotropic) scaling of the governing equations (including of wind and boundary conditions).

4) Multifractals are the generic scaling process: atmospheric fields show excellent cascades structures up to planetary scales (horizontal) and ≈ 10km (vertical).

5) This is possible due to anisotropic scaling (Generalized Scale Invariance).

6) Extreme events/ divergence of moments as theoretically predicted (order ≈ 5 for velocity).

7) Realistic space-time simulations are possible.

References: