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Rainfall extremes and their evolution in a changing climate

✓ Assess the evolution of extreme precipitation events in a changing climate, over an extensive high resolution (say 4-

km) spatial grid, various climatic regions, and over a wide range of temporal scales.

• High resolution (e.g. hourly) precipitation dataset with extensive spatial coverage and record length (exceeding say 40

years) Statistical downscaling and bias correction of reanalysis products

➢ Requirements:

• Statistical framework for robust estimation of rainfall extremes from short rainfall records (say 10 years), over a

wide range of temporal scales  IDF curve estimation

 Apply the introduced IDF estimation framework to sequential (say 10-year) segments of the data to assess how

extreme rainfall evolves over time.  Detach from the stationarity assumption

➢ Overarching objective:

Use of multifractal scaling

arguments for IDF estimation from

short rainfall samples

1

Statistical downscaling and bias

correction for robust extreme

rainfall estimation at fine

spatiotemporal scales.

2
Evaluation of extreme

rainfall trends based on

reanalysis outputs

3

Effects of climate change on extreme

rainfall evolution based on historical

information



Definition of IDF Curves

Imax,d: annual maximum of Id

id,T: value exceeded by Imax,d with probability 1/T (years)

Id: average rainfall intensity over duration d

IDF Curves

log id,T

log d

T



Methods of IDF Estimation
From the historical series of annual rainfall maxima (AM approach)

id,T= b(d) α(Τ) 

• Separability assumption in d and T…

➢Koutsoyiannis et al. (1998) approach:  

• Select c (e.g. using a homogeneity test) so 

that the standardized  historical annual 

maxima imax,d /b(d) over all d belong to the 

same population.

• Obtain α(Τ) by fitting a theoretical 

distribution model with parameters 

independent of d to the standardized  

maxima; e.g. imax,d /b(d) ~ GEV (μ, σ, k)

Limitations:  

 Estimation of a(T) and b(d) using solely 

the series of annual maxima, discarding

the largest portion of the available 

information in record. 

 Pronounced statistical variability, especially

in the estimation of the distribution shape 

parameter  extremes

 Sensitivity to outliers.

 Extreme rainfall estimation from short 

records (e.g. < 25 years)

 Regional frequency analysis for 

estimation of distribution parameters at 

ungauged locations

Reduced performance in:

IDF value

empirical function

e.g. d -c

empirical function

e.g. T k, logT

model parameter



Methods of IDF Estimation
From rainfall peaks above a properly selected threshold (PoT Approach)

Not particularly suited for IDF curve estimation… (see Emmanouil et al., 2020):  

1) For each averaging duration d, determine the threshold ud above which the scaled excesses 

Iu(d),d := [Id  – u(d)| Id > u(d) ] follow a Generalized Pareto (GP) distribution model (see e.g.

Langousis et al., 2016).  

2) For each d, fit a GP model to the scaled excesses: Iu(d),d  ~ GP (u(d), au(d), k)

3) Reparameterize the resulting GP distributions to zero threshold, by adding a concentrated 

mass at zero and rescaling the shape parameter (Deidda, 2010).

4) Regress the parameters of the resulting GP model against d : a0(d) = h d -u z0(d) = e d g
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scale parameter probability of rain

…condition k to be independent of d

…match the mean of the historical annual maxima

➢ Use larger portion of the 

available information, 

not  just the annual 

maxima



Methods of IDF Estimation
From stochastic models of rainfall

➢ Fit a model to the continuous rainfall record

➢ Calculate IDF curves from the fitted model  typically through MC simulation

Multifractal Rainfall Models:

Temporal rainfall is said to be multifractal (MF) if the statistics remain unchanged when the observation 

axis is contracted by a factor r > 1 and the rainfall intensity is multiplied by some random variable Ar.

t

D

ID

t

D

ID/2 = ID A2
ID

D/2
….

Illustration: Multiplicative Cascades

t

d

Id = ID  AD/d ID

D

✓ Robust parameter estimation even from short records

✓Use information from the full historical record

✓ Separable IDF scaling for d → 0 or T → ∞

Advantages

id,T ~T k d -c 



Multifractal IDF Curves

➢Analytical solution for MF IDF curve estimation (Langousis et al., 2009):
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r = D/d,    γ = logrr0
(id,T /Ī) 

D : Average “storm” interarrival time (upper limit of multifractality)

Cβ : Fraction of intra-storm dry periods (i.e. Cβ = 0  compact rainfall)

CLN : Amplitude of the multiplicative fluctuations when it rains

Ī : Mean rainfall intensity

✓ 4-parameter model with physically meaningful setting…



Comparison of Alternative IDF Estimation Approaches

➢Available data: 36 raingauge stations in Northeast US with > 60 years

of hourly recordings

d (hours)

i
(m

m
/h

)

Illustration: Empirical and model based IDFs

MFPoTAMEmp.

T =1000 yr

T =5 yr

T =100 yr

T =10 yr
T =50 yr

T =25 yrStation USC00302454  (61 years)

➢Use bootstrapping to:

• Study the uncertainty in model parameter estimation

• Assess the accuracy and robustness of model based IDF estimates

• Produce parameter maps

Benchmarking: empirical IDFs from the full record length

…vs IDF model 

and record length



MF Parameter Maps

D D D

CLN CLN CLN

Cβ Cβ Cβ

Ī ĪĪ

la
ti

tu
d
e

longitude

N = 2 years (100 ensembles) N = 10 years (100 ensembles) N = 50 years (100 ensembles)

✓ Robust parameter estimation irrespective of the sample length 
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longitude

higher elevation

higher CLN

lower Cβ

larger Ī

lower D
Emmanouil, S., A. Langousis, E.I.

Nikolopoulos, and E.N. Anagnostou (2020)

Quantitative assessment of annual maxima,

peaks-over-threshold (PoT) and multifractal

parametric approaches in estimating intensity-

duration-frequency (IDF) curves from short

rainfall records, Journal of Hydrology, 589,

125151, doi: 10.1016/j.jhydrol.2020.125151.

✓ Physically meaningful 

parameter setting 

explained by local 

topography and 

rainfall climatology



IDF estimates for T = 50 years

d = 1 hr

Full record

length (> 60 years)

Empirical
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IDF estimation Bias – Variance – DRMSE

Relative bias Variance of relative error DRMSE

d = 2 hr d = 2 hr

d = 24 hr d = 24 hr d = 24 hr

d = 2 hr

AM

POT

MF

T = 5 yr

T = 10 yr

T = 25 yr

T = 50 yr

✓ For all d and T studied, the MF analytical approximation produces accurate and 

robust estimates even for sample lengths down to 1-2 years! 
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Statistical downscaling and bias correction of ERA5 

atmospheric reanalysis product

✓ Solution:

a) statistical correction of the incorporated datasets, and 

b) downscaling of a lower resolution product with extensive temporal coverage to finer spatial scales.

➢ Assess hydroclimatic risk
multi-year precipitation datasets at adequately high spatial

and temporal resolutions

➢ Numerous precipitation datasets with extensive spatial 

coverage and record lengths (exceeding 40 years)
atmospheric reanalysis:

o ERA5 offers robust global hourly precipitation

estimates from 1979 to the current date over a 28

km grid.

o Rather coarse for physically based distributed

hydrologic simulations.

➢ The aforementioned weaknesses could be remedied by

employing high-resolution remote sensing-based rainfall

estimates.

o The temporal coverage is usually in the range from 15

to 18 years

significant constraint for water resources applications



Data and Study Domain

1. Hourly rainfall measurements from NOAA

o Includes 1818 rain gauge stations with extensive precipitation

records (i.e., more than 40 years) over the entire CONUS (Wuertz et

al., 2018).

2. ERA5 atmospheric reanalysis

o Hourly rainfall estimates, over a 28-km, CONUS-wide grid.

o Spanning back to 1979 (recently 1950, under a preliminary edition).

3. Stage IV radar-based precipitation estimates

o Hourly rainfall estimates, over a 4-km, CONUS-wide grid.

o Spanning back to 2002.
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Brief description of statistical downscaling framework

➢ Parametric Quantile – Quantile

(Q-Q) correction

Particularly suited for bias correction

✓ low sensitivity to the intrinsic

assumption of stationarity

✓ ability to extrapolate beyond

the range of the available

historical records

mm/h

C
C

D
F

(a) ERA5

(b) Stage IV

uopt = 0.25 mm/h 

uopt = 0.96 mm/h 

ξ = 0.13 

ξ = 0.1

C
C

D
F

✓ Two component theoretical 

distribution model fitting 

✓ Lower rainrates follow a LN

distribution model

✓ Higher rainrates follow a GP 

distribution model

Advanced parametric Q-Q mapping 

framework

➢ maintains continuity of the

distribution mixture by selecting

an optimal threshold to shift

between the distribution models

used for higher and lower

rainrates.



Findings
Statistical downscaling of atmospheric reanalysis precipitation data
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✓ Biases in western US are alleviated.

✓ The product benefits from the strengths of the reference datasets. 
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The full, CONUS-wide dataset can be found in: 

https://doi.org/10.5061/dryad.8kprr4xnq. 

Emmanouil, S., A. Langousis, E.I. Nikolopoulos,

and E.N. Anagnostou (2021). A CONUS-wide, long-

term and high-resolution precipitation dataset based

on a refined parametric statistical downscaling

framework, Water Resources Research, 57(6),

e2020WR029548, doi: 10.1029/2020WR029548.

https://doi.org/10.5061/dryad.8kprr4xnq


Evaluating extreme rainfall trends based on reanalysis 

outputs
1) The continuous hourly rainfall timeseries is split into sequential 10-year segments, where climate conditions can be

assumed stationary.

2) The parametric multifractal (MF) analytical approximation by Langousis et al. (2009) is employed to each segment to

acquire rainfall intensity estimates for return periods T ranging from 2 years to more than 100 years.
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Findings
Current extreme rainfall trends based on multifractal scaling arguments

➢ The dextrorotation reveals that changes in shorter durations tend to be more pronounced. 

▪ An indication that the spatial structure of storms is evolving, which can alter catchment flood responses.

➢ Beyond the apparent effects on the magnitude and frequency of intense precipitation events, IDF curves tend to rotate.

➢ Extent of changes across averaging durations differs. 

Emmanouil, S., A. Langousis, E.I. Nikolopoulos, and

E.N. Anagnostou (2022). The spatiotemporal evolution of

rainfall extremes in a changing climate: A CONUS-wide

assessment based on multifractal scaling arguments,

Earth’s Future, (accepted).T = 1000 yr

T = 25 yr
T = 10 yr

T = 50 yrT = 100 yr

Vertical movement and rotation

T = 10 yr

T = 100 yr

T = 25 yr

T = 1000 yr

T = 50 yr



Findings
Current extreme rainfall trends based on multifractal scaling arguments

Current return period levels are skewed to the right

Reduced non-exceedance probability levels

existing infrastructure designed to withstand catchment responses initiated by

storms corresponding to T = 50 yr, could be overwhelmed at least once in a

period of 1 to 20 yr.
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Emmanouil, S., A. Langousis, E.I. Nikolopoulos, and E.N.

Anagnostou (2022). The spatiotemporal evolution of rainfall

extremes in a changing climate: A CONUS-wide assessment based

on multifractal scaling arguments, Earth’s Future, (accepted).



Conclusions

➢ Advanced multifractal 

framework

✓ Robustly provide IDF estimates even with small sample sizes (down to 2 years).

✓ Meaningful parameter setting that is explained by local topography and rainfall

climatology.

✓ Applied to adequately short and sequential segments, where conditions can be

fairly assumed stationary.

➢ Versatile downscaling technique

✓ Two-component theoretical distribution model.

✓ Maintains continuity of the distribution mixture.

✓ Automatic selection of an optimal threshold to shift between the models

for higher and lower rainrates.

✓ Characterized by simplicity, versatility and computational effectiveness,

while its data requirements are relatively low.

Extreme rainfall trends for various return periods T and durations d.

➢ Existing infrastructure may be severely impacted by the effects of climate change.

➢ Observed trends
i. influenced by local topography and rainfall climatology,

ii. depend on the characteristic d and T of interest.



Future Research

➢ Evolving spatiotemporal patterns

of intense precipitation

future design considerations should explicitly account for the

nonstationary nature of the rainfall process.

➢ Hydrological model outputs are largely

affected by the spatial resolution of the

rainfall input (see e.g., Perra et al., 2020)

➢ Most climate projections are offered at

relatively coarse spatial scales (i.e., on the

order of 25 km or more)

important to quantify the extent to which extreme rainfall

trends are affected by the spatial resolution of the parent

rainfall fields.

➢ Climate model projections 

i. understand how the observed trends could evolve in future scenarios.

ii. framework that accommodates the incorporation of the acquired extreme

rainfall trend estimates to the design of critical infrastructure.
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