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The model
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Seymour Narrows, 
Between Vancouver and  Quadra Islands
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Self-similarity of vortices

1962: 1st Observation
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Breaking of the 1/3-scaling symmetry

Broken

h=1/3 is not true?
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Not observed!

There is a problem with K41!



The rough nature of the velocity field

While kinetic energy is small below h enstrophy is not!

End of interesting scales?



Velocity gradients increase as resolution scale is
decreased!

Yeung et al, 2018
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Gradients

What happens at infinite resolution?



Yeung et al, 2018
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What about dissipation?

Dissipation



The rough nature of the velocity field

Building of extreme velocity
gradients at increasing Reynolds

Bhuaria et al, 2020

End of interesting scales?

How do these large velocity gradients end  to?



Fate of large gradients: Burgers

∂tu+u∂xu =ν ∂xxu v→ 0

A regular intial condition… …ends in singularity!

What is the situation with Navier-Stokes?



Regularity of
Navier-Stokes equations
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Millenium Problem:
Well posedness of the Cauchy problem for finite energy solutions: 
existence, uniqness, regularity

! 0, . = !&

2D: yes (Ladyzhenskaya, 1958)
3D:  existence of global weak solutions. (Leray, 1934) but 
uniqness and regularity=open for 
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* > 1 (Serrin’s criterium)



Singularities:Navier-Stokes vs Euler

Singularities if diverging velocity Singularities if diverging vorticity
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Blow-up criteria

Existence of Self-similar Solutions

No non-zero BSS solution    (Tsai, 1998)

Existence of FSS solution for 

(Jia&Sverak, 2013)

!* ∈ ,- ℝ/ ∖ 0

Existence of a self-similar solution

Elgindi 2020



Regularity for physicist: Holder continuity

Hölder continuity:

Building Blocks: velocity increments

Karman-Howarth Equation:

Velocity Structure Functions:

Local energy dissipation:



Regularity for physicist: 
singularity vs quasi-singularity

Hölder continuity:

Building Blocks: velocity increments

Regularizing scale through viscosity: 

Blow-up of velocity gradients: 

Singularity of NSE: h=-1
Quasi-singularity of NSE: h>-1

Paladin&Vulpiani
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ABSTRACT. These lectures give an account of recent results pertaining to the celebrated
Onsager conjecture. The conjecture states that the minimal space regularity needed for a
weak solution of the Euler equation to conserve energy is 1/3. Our presentation is based
on the Littlewood-Paley method. We start with quasi-local estimates on the energy flux,
introduce Onsager criticality, find a positive solution to the conjecture in Besov spaces of
smoothness 1/3. We illuminate important connections with the scaling laws of turbulence.
Results for dyadic models and a complete resolution of the Onsager conjecture for those
is discussed, as well as recent attempts to construct dissipative solutions for the actual
equation.

The article is based on a series of four lectures given at the 11th school “Mathematical
Theory in Fluid Mechanics” in Kácov, Czech Republic, May 2009.

”...in three dimensions a mechanism for
complete dissipation of all kinetic
energy, even without the aid of
viscosity, is available.”

L. Onsager, 1949

1. Lecture 1: motivation, Onsager criticality.

1.1. Onsager’s original conjecture. The motion of an ideal homogeneous (with constant
density 1) incompressible fluid is described by the system of Euler equations given by

∂u

∂t
+ (u ·∇)u = −∇p, (1)

∇ · u = 0, (2)
where u is a divergence-free velocity field, and p is the internal pressure. We assume that
the fluid domain Ω here is either periodic or the entire space. It is an easy consequence of
the antisymmetry of the nonlinear term in (1) and the incompressibility of the fluid that the
law of energy conservation holds for smooth solutions:

∫

Ω
|u(t)|2dx =

∫

Ω
|u0|2dx, for all t ≥ 0. (3)
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If  h ≤ 1/3 à Dissipation through irregularities (singularities)
Without viscosity !

If  h > 1/3 à Euler equation conserves energy,
Dissipation in Navier-Stokes by viscosity.

(Eyink 1994, Constantin et al, 1994)D u( ) x[ ]∝ limℓ→0 ℓ3h−1

Duchon&Robert. Nonlinearity  (2000),

Inertial dissipation:

(

(Isett, 2018)

See Eyink&Sreenivasan (2006)

Regularity for physicist: 
Dissipative vs non-dissipative singularity

Local energy dissipation:

Link with Onsager’s conjecture



Singularity vs quasi-singularity:
Illustration on Burgers solution

∂tu+u∂xu =ν ∂xxu
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True singularity

Quasi-singularity
Regularization over 
distance



Dissipative singularity:
Illustration on Burgers solution

∂tu+u∂xu =ν ∂xxu
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Eyink 2007-2008



Regularity for physicist: 
Link with scaling symmetries?

Hölder continuity:

Building Blocks: velocity increments

Link with scaling properties of NSE: 

When

Leray rescaling

h-rescaling

(Euler equation)  
Leray 1934

Frisch, Book
What are the values of h for NSE and Euler?Interesting questions:



Probabilistic search using large deviations

Cafarelli theorem Singularities, if any, are very rare

Probabilistic search, using large deviations

C(h): large deviation function of h

!" ≈ ℓ% over a fractal set of Codimension &(ℎ)

Heuristic interpretation of Parisi&Frisch (1987)

C(h) is also called
multi-fractal spectrum



Expressing Physicists laws with C(h)

4/3 law

Exponent Velocity Structure Functions:

Mean energy dissipation:

Parisi&Frisch, 1987

Benzi et al, 1991
Nelkin, 1990

Boffetta et al, 2008



Constraints on C(h)
4/3 law

Legendre
Property

Mean energy dissipation: Boffetta et al, 2008
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Parisi&Frisch, 1987

Benzi &Biferale, 2009



Normalization

4/5th law & Theorem 1
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Theoretical constraints using bounds on velocity
gradient

Impossibility to reach h=-1 for 
periodic boundary conditions
(Dubrulle&Gibbon, 2021)

Gibbon’s theorem
for weak solutions of 
NSE on a torus



Empirical constraints on C(h) 

C(h) is independent of the flow forcing 
or geometry

Arneodo et al, 1996

C(h) is close to log-normal

Kestener&Arneodo, 2004

C(h) depends on 
the velocity components

Arneodo, Chevillard, Castaing…

b=0.025 for longitudinal velocity increments

b=0.04 for transverse velocity increments

1

2

3



Empirical constraints on hmin

Periodic bc

Non periodic bc

Iyer, Sreenivasan&Yeung, 2020

Faller et al, 2021

for longitudinal velocity increments

for transverse velocity increments

Use refined similarity to extend range



Empirical constraints on hmin

Periodic bc

Non periodic bc

Iyer, Sreenivasan&Yeung, 2020

Faller et al, 2021

for longitudinal velocity increments

for transverse velocity increments

Use refined similarity to extend range
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Pseudo-Holder

Nguyen et al, PRE (2019) 

Deterministic search using multifractal

C(h) provides a statistical estimate on the strength of the 
filtered large gradients and can be used to map locally the
Holder exponent

+1



Pseudo-Holder vs D(u) 

Statistical correlation

Temporal and spatial correlation

Nguyen et al, PRE (2019) 

hmin=0.3
High  DR

ℎ = 1/3

Low DR

D(u)



Statistics and geometry of most irregular events

Estimation of dissipation and circulation production rates. With our velocity fields, we can

compute the velocity increments �u(r) = u(x2D + r2D)� u(x2D), From this, we define two scale

dependent scalar functions: the local energy dissipation rate D`(u) 15:

D`(u) =
1

4

Z

V
d3r (rG`)(r) · �u(r) |�u(r)|2, (4)

where V is a full disk, and the local rate of velocity circulation decay16:

d

dt
�`(u) =

I

C
ds ·F `(u), (5)

where

F `(u) =

Z

V
d3r

✓
�u(r)�

Z

V
d3r0G`(r

0
)�u(r0)

◆
·rG`(r)

�
�u(r), (6)

C being any contour advected by the fluid and G is a spherically symmetric function of r

given by:

G`(r) =
1

N
exp(�1/(1� (r/2`)2)), (7)

where N is a normalization constant such that
R
d3rG`(r) = 1.

In addition, we may also compute the local rate of viscous dissipation at the resolution scale,

given by:

D⌫
�x(u) = ⌫SijSij, (8)

16

Nguyen PhD Thesis  (2020); ; Nguyen et al, PRE (2020)
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The strongest events are Burgers
vortices



Work done with


