Global vs local multifractal

B. Dubrulle CEA Saclay/SPEC/SPHYNX

CNRS UMR 3680

Fluids and Vortices around us

The model

Self-similarity of vortices

Seymour Narrows, Between Vancouver and Quadra Islands

APRE, 6tx SHIPS SAILING SAFELY THROUGH SEYMOUR MARROWS

1962: 1st Observation

Fig. 6.2. The turbulence spectra, measured by Grant, Stewart and Moilliet (1962) and scaled according to the Kolmogorov parameters. The viscous dissipation rate ϵ_0 varied over a range of values of the order 100. The straight line represents variation as $\kappa^{-\frac{5}{2}}$. The top few points are believed to be rather high on account of the low frequency heaving motions of the ship.

Breaking of the 1/3-scaling symmetry

 $\delta u \sim \ell^{1/3} \Longrightarrow \qquad S_p(\ell) = <(\delta u)^p > \sim \ell^{p/3}$

Not observed!

The rough nature of the velocity field

While kinetic energy is small below η enstrophy is not!

Velocity gradients increase as resolution scale is decreased!

$$k_{max}\eta = 1.4$$
$$k_{max}\eta = 2.8$$
$$k_{max}\eta = 5.6$$

What happens at infinite resolution?

Gradients

Yeung et al, 2018

What about dissipation?

$$k_{max}\eta = 1.4$$
$$k_{max}\eta = 2.8$$
$$k_{max}\eta = 5.6$$

Dissipation

Yeung et al, 2018

The rough nature of the velocity field

How do these large velocity gradients end to?

Fate of large gradients: Burgers

 $\partial_t \mathcal{U} + \mathcal{U} \partial_x \mathcal{U} = \mathcal{V} \partial_{xx} \mathcal{U}$

A regular intial condition...

...ends in **singularity!**

What is the situation with Navier-Stokes?

Regularity of Navier-Stokes equations

$$\begin{vmatrix} \vec{\nabla} \bullet \vec{u} = \vec{0} \\ \vec{\partial}_t \vec{u} + (\vec{u} \bullet \vec{\nabla}) \vec{u} = -\frac{1}{\rho} \vec{\nabla} p + v \Delta \vec{u} \end{vmatrix}$$

$$u(0, .) = u_0$$

Millenium Problem:

Well posedness of the Cauchy problem for finite energy solutions: existence, uniquess, regularity

2D: yes (Ladyzhenskaya, 1958)
3D: existence of global weak solutions. (Leray, 1934) but uniquess and regularity=open for

$$u \in L^p(0;T;L^q(\mathbb{R}^3))$$
 with $\frac{2}{p} + \frac{3}{q} > 1$ (Serrin's criterium)

Singularities:Navier-Stokes vs Euler

Blow-up criteria

Singularities if diverging velocity

$$\int_{0}^{T_{*}} ||u(x,t)||_{\infty}^{2} dt = \infty.$$
$$||u(\cdot,t)||_{3} = \infty.$$

$$\int_{0}^{T_{*}} ||\omega(x,t)||_{\infty} dt = \infty.$$

Existence of Self-similar Solutions

$$u(t,x) = \frac{1}{\sqrt{2\kappa t}} U\left(\frac{x}{\sqrt{2\kappa t}}\right)$$

No non-zero BSS solution (Tsai, 1998)

Existence of FSS solution for

 $u_0 \in \, \mathcal{C}^\infty(\mathbb{R}^3 \setminus \{0\})$

(Jia&Sverak, 2013)

Existence of a self-similar solution

$$\omega(x,t) = \frac{1}{t - t_*} F\left(\frac{x}{(t - t_*)^{\zeta}}\right)$$

Elgindi 2020

Regularity for physicist: Holder continuity

 $\exists (C, \epsilon, h), \ s.t. \ \forall \ell < \epsilon, \quad |\vec{u} (\mathbf{x} + \ell) - \vec{u} (\mathbf{x})| < C\ell^h.$ Hölder continuity:

Karman-Howarth Equation:

Building Blocks: velocity increments

$$\delta \vec{u}(\mathbf{x}, \ell) = \vec{u}(\mathbf{x} + \ell) - \vec{u}(\mathbf{x})$$

Velocity Structure Functions:

$$\mathcal{S}_p = \langle (\delta \vec{u})^p \rangle \sim \ell^{\zeta(p)}$$

Local energy dissipation:

$$\epsilon_{\ell} = \frac{1}{4} \int d\vec{\xi} \,\nabla \phi^{\ell}(\xi) \cdot \delta_{\xi} \vec{u} (\delta_{\xi} \vec{u})^{2} + \frac{\nu}{2} \int d\vec{\xi} \,\nabla^{2} \phi^{\ell}(\xi) (\delta_{\xi} \vec{u})^{2}.$$
$$\sim_{\ell \to 0} -D(\vec{u}) - \nu (\nabla \vec{u})^{2}$$

Regularity for physicist: Dissipative vs non-dissipative singularity

Local energy dissipation:

$$\epsilon_{\ell} = \frac{1}{4} \int d\vec{\xi} \,\nabla \phi^{\ell}(\xi) \cdot \delta_{\xi} \vec{u} (\delta_{\xi} \vec{u})^{2} + \frac{\nu}{2} \int d\vec{\xi} \,\nabla^{2} \phi^{\ell}(\xi) (\delta_{\xi} \vec{u})^{2} \cdot \delta_{\xi} \vec{u} (\delta_{\xi} \vec{u})^{2} \cdot \delta_{\xi}$$

$$\frac{1}{2}\partial_t \mathbf{u}^2 + \operatorname{div}\left(\mathbf{u}\left(\frac{1}{2}\mathbf{u}^2 + p\right) - \nu\nabla\mathbf{u}\right) = D(u) - \nu \nabla\mathbf{u})^2$$

Duchon&Robert. Nonlinearity (2000),

"...in three dimensions a mechanism for complete dissipation of all kinetic energy, even without the aid of viscosity, is available."

> L. Onsager, 1949 See Eyink&Sreenivasan (2006)

$$D(u)[x] \propto \lim_{\ell \to 0} \ell^{3h-1}$$

Inertial dissipation:

Link with Onsager's conjecture

If $h > 1/3 \rightarrow$ Euler equation conserves energy, Dissipation in Navier-Stokes by viscosity. (Eyink 1994, Constantin et al, 1994)

If $h \le 1/3 \rightarrow$ Dissipation through irregularities (singularities) Without viscosity !

(Isett, 2018)

Singularity vs quasi-singularity: Illustration on Burgers solution

Dissipative singularity: Illustration on Burgers solution

Regularity for physicist: Link with scaling symmetries?

Hölder continuity: $\exists (C, \epsilon, h), \ s.t. \ \forall \ell < \epsilon, \quad |\vec{u} (\mathbf{x} + \ell) - \vec{u} (\mathbf{x})| < C\ell^{h}.$

Building Blocks: velocity increments

$$\delta \vec{u}(\mathbf{x}, \ell) = \vec{u}(\mathbf{x} + \ell) - \vec{u}(\mathbf{x})$$

$$\delta \vec{u} = \vec{u}(x+\ell) - \vec{u}(x) \sim_{\ell \to 0} \ell^h$$

Link with scaling properties of NSE:

$$(t, x, u) \to (\lambda^2 t, \lambda x, \lambda^{-1} u) \quad \forall \lambda$$
 Leray rescaling

When $\nu = 0$ (Euler equation) $(t, x, u) \rightarrow (\lambda^{1-h}t, \lambda x, \lambda^{h}u) \quad \forall (\lambda, h)$ *Leray 1934 h-rescaling*

Frisch, Book

Interesting questions:

What are the values of h for NSE and Euler?

Probabilistic search using large deviations

Singularities, if any, are very rare

Probabilistic search, using large deviations

$$\operatorname{Prob}\left[\ln(\delta u) = h \ln(\ell/L)\right] \sim_{\ell \to 0} e^{\ln(\ell/L)C(h)} = \left(\frac{\ell}{L}\right)^{C(h)},$$
C(h): large deviation function of h

Cafarelli theorem

Heuristic interpretation of Parisi&Frisch (1987)

 $\delta u pprox \ell^h$ over a fractal set of Codimension C(h)

C(h) is also called multi-fractal spectrum

Expressing Physicists laws with C(h)

Boffetta et al, 2008 Nelkin, 1990 Benzi et al, 1991

Parisi&Frisch, 1987

Constraints on C(h)

Theoretical constraints using bounds on velocity gradient

Gibbon's theorem for weak solutions of NSE on a torus

$$\left\langle (\nu^{-1} \| \nabla^n u \|_{2m})^{1/\alpha_{n,m}} \right\rangle_T \le c_{n,m} \, Re^3$$
$$\alpha_{n,m} = \frac{2m}{2m(n+1) - 3}$$

Impossibility to reach h=-1 for periodic boundary conditions (**Dubrulle&Gibbon, 2021**)

Empirical constraints on C(h)

C(h) is independent of the flow forcing or geometry

Arneodo et al, 1996

Arneodo, Chevillard, Castaing...

C(h) depends on the velocity components

Kestener&Arneodo, 2004

b=0.025 for longitudinal velocity increments $\delta u_T = \vec{\ell} \cdot \vec{u}(x+\ell) - \vec{u}(x))/\ell^2$

b=0.04 for transverse velocity increments $\delta u_T = \vec{\ell} \times \vec{u}(x+\ell) - \vec{u}(x))/\ell^2$

Empirical constraints on h_{min}

Periodic bc

 $h_{min} > 0$ for longitudinal velocity increments

 $h_{min} = 0$ for transverse velocity increments

Iyer, Sreenivasan&Yeung, 2020

Non periodic bc

Use refined similarity to extend range

$$\frac{\langle |\delta u_{\ell}|^{p} \rangle}{\langle |\delta u_{\ell}|^{3} \rangle^{p/3}} = \frac{\langle |D_{I}^{\ell}|^{p/3} \rangle}{\langle |D_{I}^{\ell}| \rangle^{p/3}}$$

 $h_{min} < \sim 0$

Faller et al, 2021

Empirical constraints on h_{min}

Periodic bc

 $h_{min} > 0$ for longitudinal velocity increments

 $h_{min} = 0$ for transverse velocity increments

Iyer, Sreenivasan&Yeung, 2020

Non periodic bc

Use refined similarity to extend range

$$\frac{\langle |\delta u_{\ell}|^{p} \rangle}{\langle |\delta u_{\ell}|^{3} \rangle^{p/3}} = \frac{\langle |D_{I}^{\ell}|^{p/3} \rangle}{\langle |D_{I}^{\ell}| \rangle^{p/3}}$$

 $h_{min} < \sim 0$

Faller et al, 2021

Deterministic search using multifractal

$$\overline{\partial u}^{\ell} \sim \frac{\delta u}{\ell} \sim \ell^{h-1}$$

C(h) provides a statistical estimate on the strength of the filtered large gradients and can be used to map locally the Holder exponent

$$h(p)\log(\ell) \sim \frac{\langle log(\delta u) (\delta u)^p \rangle}{\langle (\delta u)^p \rangle}$$

Pseudo-Holder

Pseudo-Holder vs D(u)

Statistical correlation

Nguyen et al, PRE (2019)

Statistics and geometry of most irregular events

$$D_{\ell}(\mathbf{u}) = \frac{1}{4} \int_{\mathcal{V}} d^3 r \; (\boldsymbol{\nabla} G_{\ell})(\mathbf{r}) \cdot \delta \mathbf{u}(\mathbf{r}) \; |\delta \mathbf{u}(\mathbf{r})|^2,$$

The strongest events are Burgers vortices

Nguyen PhD Thesis (2020); ; Nguyen et al, PRE (2020)

Work done with

PhD's: D. Kuzzay, P. Debue, D. Geneste, H. Faller, F. Nguyen, T. Chaabo

Post-Docs: D. Faranda, E-W. Saw, V. Shukla, V. Valori, A. Cheminet

Team EXPLOIT: F. Daviaud J-P. Laval, J-M. Foucaut, Ch. Cuvier, Y. Ostovan

C. Nore

