

NREL/DOE Wind Modeling Tools

Paul Veers

March 31, 2021

NREL/DOE Open-Source Modeling Tool Overview

	Model Fidelity / Computational Intensity		
Application	Design Exploration	Detailed Design	Highly Resolving
Single Turbine Performance and Loads	WISDEM Multidisciplinary design optimization and cost modeling	OpenFAST Turbine loads analysis, detailed turbine design, IEC standards	ExaWind/SOWFA Understand physics, final turbine design check, calibrate / validate lower fidelity
	Other Tools: Turbine Architect, CpMax, HawtOpt2	Other Tools: Bladed, HAWC2, FLEX 5	Other Tools: EllipSys3D-HAWC2, STAR-CCM+
Full Wind-Plant Performance and Loads	FLORIS Wind-plant controls and siting optimization	FAST.Farm, WindSE Turbine siting within plant, wind-plant controls, plant loads analysis, detailed plant design	ExaWind/ERF/SOWFA Understand physics, final plant design check, calibrate / validate lower fidelity
			zalus a rias sa (
	Other Tools: WAsP, WindFarmer, Fuga	Other Tools: openWind, MeteoDyn WT, DWM	Other Tools: EllipSys3D, PALM, WRF-LES, W2A2KE3D, VFS-Wind

* Other Tools are other widely-used tools with similar capabilities

Key WISDEM Modules

SE = Systems Engineering

InflowWind

- Undisturbed wind inflow:
 - oSteady
 - OUniform, but timevarying (e.g., deterministic gusts from IEC)
 - Full-field (FF)
 turbulence (TurbSim,
 Mann)
 - \circ User-defined

TurbSim

Computes full-field stochastic wind realizations:

- Inputs are desired wind profile & turbulence characteristics
- Includes IEC- & site-specific turbulence models
- Option to generate coherent structures from LES & DNS output
- Past changes:
 - Added a model for tidal turbines
 - Added option for generating periodic wind for long time series
 - Construct wind field around known time history at points
 - PY-TurbSim: Python implementation
 - Temporal non-stationarity (Phase Correlation)
- Current opportunities:
 - Include more site-specific models
 - Use for precursor wind fields

Full-Field Turbulence Grids

PDD parameters have direct effect on time domain behavior

PDD=Phase Difference Distribution

Can easily implement KSEC-TC model in TurbSim

90 m hub height,

Ú

IEC Parameters: Turbulence class

10 m/s reference speed

10 m spacing

140 m,

Grid: 140 m x

Computational Wind-Plant Modeling – Challenges & Strategy

- Challenges
 - Geometry-resolved turbine simulations O(billion) grid points
 - Arbitrary mesh motion blade deformations, nacelle-yaw, floating-platform motion
 - Turbulence modeling DNS is impossible given the range of scales
 - Coupling to mesoscale models
- Modeling pathway
 - Acoustically-incompressible Navier-Stokes (N-S) flow equations
 - Hybrid ABL/LES/RANS turbulence models
 - Hybrid structured/unstructured CFD solvers w/ overset-mesh coupling methodology
- Other considerations
 - Open-source development model
 - Rigorous verification & validation process, robust unit and regression test suite
 - Follow modern software development practices version control, CI, etc.

Turbine simulations

Atmospheric boundary layer simulations

Nalu-Wind – GPU Scaling & Performance

Geometry-resolved turbine simulations in uniform flow

ExaWind – Primary Application Codes

AMR-Wind Nalu-Wind https://github.com/exawind/amr-wind • https://github.com/exawind/nalu-wind Block-structured finite-volume discretizations Unstructured grid finite-volume discretization • Incompressible N-S solver Incompressible N-S solver C++ code built AMReX Hybrid RANS/LES turbulence models • C++ code built on Trilinos; Kokkos abstractions Full-functionality on NVIDIA, AMD, Intel GPUs **OpenFAST Core ECP Software Technology Integrations** https://github.com/openfast/openfast Trilinos, AMReX, *hypre*, kokkos, kokkos-kernels, Alpine-DAV, spack Whole-turbine simulation code ۰ Includes models for blades, control system, ۲ drivetrain, tower, etc.

AMR-Wind – GPU Scaling & Performance

Velocity field in a representative AMR-Wind large-eddy simulation of a 3 x 3 x 1 km³ domain for a neutrally stable ABL

Atmospheric Boundary Layer (ABL) simulations

- Key component for wind turbine & wind farm simulations
- Structured hex mesh with uniform grid resolution
- LES turbulence model with shear-stress wall BC; periodic BC on sides
- Strong & weak scaling studies on ORNL Summit

AMR-Nalu-ExaWind Simulation: IEA Task 29 Rotor

Visualization of the flow field around the 2-MW NM80 wind turbine under turbulent inflow. The isosurfaces highlight vortical structures and the colors indicate streamwise velocity.

Image courtesy of Ganesh Vijayakumar, Shreyas Ananthan and Mike Brazell, NREL

Computational Solutions for Offshore Wind

- The large scales and expensive of hardware will drive greater reliance on high-fidelity computational results
- Design-level capabilities will use AI/ML to capture highfidelity computational findings

LES of a marine atmospheric boundary layer over idealized, wind following and fast-propagating long waves (swell)

AMR-Wind two-phase solver (air and water) simulates breaking waves

Thank You! Questions?

Image: Ananthan, Vijayakumar, Binyahib (NREL)