

Multifractal analysis and simulations: from WAUDIT to RW-Turb

by Daniel Schertzer

Hydrology, Meteorology& Complexity (HM&Co)Ecole des PontsParisTech

Ecole des Ponts ParisTech

- Formerly Ecole Nationale des Ponts et Chaussées ("National School of Bridges and Roads")
 - one of the world's oldest Civil Engineering School (1747)
 - <u>Cauchy</u>, Carnot, Coriolis, Darcy, Fresnel,
 <u>Navier</u>, <u>Saint-Venant</u>... Liouville
 - Becquerel (Nobel in Physics), J. Tirole (Nobel in Economy)

last decades

- beyond its more traditional fields and into an international institution,
- adapting to the changing demands of the modern world
 - cofounder of ParisTech Paris-Est University and AvanCity
 - teaching complex systems, multifractals, etc. to young generations of engineers and managers

From Navier (1822)... to Stokes (1843)

Louis Navier

Augustin-Louis Cauchy

Adhémar Jean Claude Barré de Saint-Venant

Sir George Stokes

A millenium problem raised at Ecole Nationale des Ponts et Chaussées, recent episodes:

Otelbaev (2013) and Tao (2015)

Difficulties of the subject

'Turbulence'

Maths: Existence? Uniqueness?
Navier-Stokes solutions for D > 2:

> we are still at the level of conjecture (Leray 1933, 1934)

> major difficulty: quadratic nonlinearity

Physics: basically two laws, relatively equivalent, are the source of most developments:

- ➤ diffusion law of Richardson (1926),
- ➤ Kolmogorov spectrum (1941)

Rain & turbulence

Russian dolls... and multiplicative cascades

École des Ponts

Polarimetric radar observations of heavy rainfalls over Paris region during 2016 spring (250 m resolution):

- heaviest rain cells are much smaller than moderate ones
- true for their dimensions => multifractal field 6
- **complex dynamics** of their aggregation into a large front

Ecole des Ponts ParisToch

Van der Hoven wind (integrated) spectrum (1957)

Fig. 3 Spectrum of the horizontal wind velocity. After Van der Hoyen, 26 Some experimental points are shown on the graph; see reference 26.

various measurement devices

Richardson cascade is split into macro, meso, micro oscillations...

Physical scales vs. Euclidean scales

(e.g. 23/9-D atmospheric turbulence)

- stratification
 - flattening of structures at larger scales
 - "pancake turbulence"

$$||x||_p = \left(\sum_i |x_i|^{p/H_i}\right)^{1/p}$$

exemple:

$$H = (1, 1, H_z); p = 2$$

Isotropic Euclidean scales

Anisotropic physical scales

EU-INT WAUDIT research project

Wind Turbulence: Scales, Intermittency & Extreme events

$$U_r = U(x+r) - U(x)$$

$$U_{\tau} = U(t+\tau) - U(t)$$

Figure 1.2: Same distribution as in figure 1.1 but with a logarithmic vertical axis and for increasing time-scales: $\tau = 0.1, 0.4, 1.6, 6.4$ seconds.

Experimental Data

Growian experiment (Germany):

Flat, coastal terrain Two 150m masts

Data:

- Wind speed / direction (propeller)@ 10, 50, 75, 100, 125 and 150m
- Temperature:@ 10, 50, 100 and 150m

2.5Hz / 20 min 300 measuring runs 131 validated runs

Experimental Data

Corsica experiment: Mountainous, coastal terrain One 43m mast

Data:

- Wind speed (sonic)
 - @ 22, 23 and 43m
- Temperature:
 - @ 22, 23 and 43m

10Hz / 16h 180 measuring runs 161 validated runs

Spectral Analysis

The combination of processes results in a scaling, statistical anisotropy.

Rotated Vectors' Energy Spectra

$$|\widehat{u'_{\phi}}(\omega)|^2 = E_{\phi}(\omega) = \cos^2(\phi)E_0(\omega) + \sin^2(\phi)E_{\pi/2}(\omega) - \sin(2\phi)E_{u,v}(\omega)$$

Inverse of the usual procedure!

Rotated time-dependent u-component (Fourier space):

$$\widehat{u'_{\phi}}(\omega) = \cos(\phi)\widehat{u}(\omega) - \sin(\phi)\widehat{v}(\omega).$$

Scaling Anisotropy (Corsica)

Scaling appears isotropic (with H < 1/3) on ensemble averaged spectra

Component-wise anisotropic for individual samples

Ensemble averaging the spectra results in a more isotropic rho function

➤When the temperature is an active scalar i.e. $\Delta H > 0$, over larger scales (> 10 seconds) wind scaling anisotropy entails

Scaling Anisotropy (Growian)

Isotropic homogeneous H = 1/3

Empirical anisotropy H_{ν} and H_{ν}

Rotation with height of the point of statistical isotropy ($H_u = H_v$)

Scaling behaviour appears to be more complex over flat terrain

210

150

180 150

Scaling Anisotropy In The Wake

Analyses in the wake of the wind turbine yield four leaved structures (flowers) on individual fields i.e.

highly anisotropic

These flowers can be constructed by using a correlation coefficient, r > 1.

Scale symmetries

Cascade paradigm

- > does not need to assume isotropy
- ➤but may lead to other non-trivial symmetries

The theoretical aspects were raised or supported by many empirical studies and have many consequences:

- → our overall understanding of Turbulence & Geophysics
- ➤ vast projects:
- √ space-time processes, vector fields
- √ deterministic / stochastic
- ✓ data treatment

$2+H_z$ -dimensional vorticity equation (0< H_z <1)

Stratified atmosphere:

$$D\vec{\sigma}/Dt = (\vec{\sigma} \cdot \vec{\nabla}_h)\vec{u}_h$$
$$D\vec{\tau}/Dt = (\vec{\tau} \cdot \vec{\nabla}_h + \vec{\omega}_v \cdot \vec{\nabla}_v)\vec{u}_h$$
$$D\vec{\omega}_v/Dt = (\vec{\tau} \cdot \vec{\nabla}_h + \vec{\omega}_v \cdot \vec{\nabla}_v)\vec{u}_v$$

Strong interactions between *local generalized* scales,

- = strongly non local (Euclidean) scales!
- a difficulty for direct numerical simulations?
- easy for stochastic simulations!

initial rotation along the main axis

wobble & gimbal lock

initial rotation along the smallest axis

initial rotation along the medium axis

Apollo 13 guidance computer console

3D Scaling Gyroscope Cascade

$$\left(\frac{d}{dt} + vk_n^2\right)\hat{u}_n^i = i\{k_{n+1}[|\hat{u}_{n+1}^{2i-1}|^2 - |\hat{u}_{n+1}^{2i}|^2] + (-1)^i k_n \hat{u}_n^i * \hat{u}_{n-1}^{a(i)}\}$$

a(i) is an ancestor.

Figure 2: Comparison of fluctuations: (a) atmospheric turbulence at 100*m* (*Fitton*, 2013) and (b) SGC simulation for n=6 (*Chigirinskoya* and *Schertzer*, 1996), both display somehow similar strong intermittency.

Local flux of energy:

$$\varepsilon_{n}^{i} = -\sum_{r=0}^{n} k_{n-r+1} \left[\left| \hat{u}_{n-r+1}^{2a^{r}(i)-1} \right|^{2} - \left| \hat{u}_{n-r+1}^{2a^{r}(i)} \right|^{2} \right] \operatorname{Im}(\hat{u}_{n}^{a^{r}(i)}) + (-1)^{a^{r}(i)+1} k_{n-r} \left| \hat{u}_{n}^{a^{r+1}(i)} \right|^{2} \operatorname{Im}(\hat{u}_{n-1}^{a^{r+1}(i)})$$

Mr Jourdain and Lie cascades

What is general and theoretically straightforward:

- $exp: Lie \ algebra \ \longmapsto \ Lie \ group$
- scalar valued cascade: Rd --> R+
- Lie group: smooth manifold
- Lie algebra: tangent space to the group at the identity
- therefore a vector space with a skew product that satisfy the Jacobi identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

exemple: commutator of matrices

$$[X,Y] = XY - YX \qquad [X,Y] = 0 \Rightarrow \exp(X+Y) = \exp(X)\exp(Y)$$

Mr Jourdain and Lie cascades

• Levi decomposition of any Lie algebra into its radical (good guys!) and a semi-simple subalgebra (bad guys!), e.g.:

$$l(2,R) = R \, 1 \oplus_s sl(2,R)$$

What is trickier:

- large number of degrees of freedom (dim²)
- log divergence with the resolution
- universality:
 - Levy multivariates, unlike Gaussian mutivariates, are non parametric (*)
 - asymmetry of Levy noises to have convergent statistics,

e.g.:

$$\forall n \in \mathbb{N}, \forall X \ge 0 : \exp(X) \ge X^n/n!$$

(S&L, 95, T&S 96)

Mandelbrot set in hyperbolic geometry, S&T,2018

Clifford algebra

- An important family of Lie algebras:
 - dimension: 2ⁿ
 - generalises real numbers R (n=0), complex numbers C (n=1), quaternions H (n=2) and other hyper-complex numbers, external algebras and more!
- $Cl_{p,q}$ generated by operators e^i that anti-commute and square to plus or minus the identity:

$$e^{i}e^{j} = -e^{j}e^{i} \ (i \neq j) \qquad (e^{i})^{2} = \pm 1$$

• hence a quadratic form Q, of signature (p,q,p+q=n):

$$v^2 = Q(v)1$$
 $Q(v) = v_1^2 + v_2^2 ... + v_p^2 - v_{p+1}^2 - v_{p+2}^2 ... - v_{p+q}^2$

ex.:
$$R = CI_{0,0}$$
; $C = CI_{0,1}$; $H = CI_{0,2}$
H'= $I(2, R) = CI_{2,0} = CR_{1,1}$ "pseudo-/split quaternions"

Clifford algebra

Clifford algebra are

- graded algebra (see figure)
- double algebra:
 - 2 multiplications
- super algebra (!):

$$Cl(V,Q) = Cl^{0}(V,Q) \oplus Cl^{1}(V,Q)$$

for real algebra:

$$Cl_{p,q}^0(R) \cong Cl_{p,q-1}(R) \text{ for } q > 0$$

$$Cl_{p,q}^0(R) \cong Cl_{q,p-1}(R) \text{ for } p > 0$$

$$=>$$
 $R\subset C\subset H\subset O$...

What can we learn from pseudo-quaternions?

2D linear Lie algebra /(2, R):

$$G = d\mathbf{1} + e\mathbf{I} + f\mathbf{J} + c\mathbf{K};$$

$$\mathbf{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix},$$
$$\mathbf{J} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad \mathbf{K} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$2I = [J, K], \quad 2J = [I, K], \quad 2K = [J, I]$$

on the lether October 1843
Shwilliam Now of Secretary
In a flash of genits discovered
the fland mental formation
of the termion multiplication
Court

anti-commutators:

$${I,J} = {J,K} = {K,I} = 0$$

$$-1 = I^2 = -J^2 = -K^2 = IJK$$

Fractionnaly Integrated Flux model (FIF, vector version)

FIF assumes that both the renomalized propagator G_R and force f_R are known:

Complex FIF simulation of a 2D cut of wind and its vorticity (color)

$$G_R^{-1} * u = f_R$$

where:

$$f_R = \varepsilon^a$$

 G_R^{-1}

is a fractionnal differential operator

E

results from a continuous, vector, multiplicative cascade (Lie cascade)

Fractionnaly Integrated Flux model (FIF, vector version)

FIF assumes that both the renomalized propagator G_R and force f_R are known:

$$G_R^{-1} * u = f_R$$

where: $f_R = \varepsilon^a$

 G_R^{-1} is a fractionnal differential operator

results from a
continuous, vector,
multiplicative cascade
(Lie cascade)

3D FIF wind simulation based on quaternions

Surface layer complexity!

Art piece 'Windswept' (Ch. Sowers, 2012): 612 freely rotating wind direction indicators to help a large public to understand the complexity of environment near the Earth surface

Multifractal FIF simulation (S et al., 2013) of a 2D+1 cut of wind and its vorticity (color). This stochastic model has only a few parameters that are physically meaningful.

Both movies illustrate the challenge of the near surface wind that plays a key role in the heterogeneity of the precipitations... and wind energy!

Conclusions

S&T, Earth& Space, 2020 Chaos 2015, S&al. ACP, 2012, S&L, IJBC, 2011, Fitton&al., JMI 2013

- Intermittency: a key issue in geophysics and a major breakthrough with multifractals in the 1980's:
 - infinite hierarchy of fractal supports of the field singularities
 - anisotropy: 2-D and 3-D turbulence are not the main options (2+Hz)-D atmospheric turbulence (0≤Hz≤1), with a theoretical Hz=5/9 resulting from strongly nonlocal interactions: classical;
- Not limited to scalar fields
 - Lie cascades: exponentiation from a stochastic 'algebra to its Lie group of transformations
 - Clifford algebra Cl_{p,q} mentioned at once..
 - · now used for vector fields
 - => physically meaningful and convenient to understand, analyse and simulate intermittent vector fields, more generally multidimensional systems.

=> from field physics to singularity physics

