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Ecole des Ponts ParisTech

» Formerly Ecole Nationale des Ponts et
Chaussées (“National School of Bridges and
Roads”)

— one of the world’s oldest Civil Engineering
School (1747)

— Cauchy, Carnot, Coriolis, Darcy, Fresnel,
Navier, Saint-Venant... Liouville

» Becquerel (Nobel in Physics), J. Tirole
(Nobel in Economy)

* last decades

— beyond its more traditional fields and into an
international institution,

— adapting to the changing demands of the
modern world

» cofounder of ParisTech Paris-Est
University and AvanCity

 teaching complex systems,
multifractals, etc. to young generations of
engineers and managers




Augustin-Loui Adhémar Jean Claude
Cauchy Barré de Saint-Venant

A millenium problem raised at Ecole
Nationale des Ponts et Chaussées,
recent episodes:

Otelbaev (2013) and Tao (2015)

Sir George Stokes




Difficulties of the subject
"Turbulence’

Maths: Existence? Uniqueness?
Navier-Stokes solutions for D > 2:

> we are still at the level of conjecture
(Leray 1933, 1934)

> major difficulty: quadratic nonlinearity

Physics: basically two laws, relatively ,
equivalent, are the source of most
developments: .

> diffusion law of Richardson (1926),

> Kolmogorov spectrum (1941) i PP P——



Rain & turbulence

=> Modelling of rainfall intensity by .. o
multiplicative cascades

Solar energy Water vapor Clouds Rain
Localised energy Localised energy + Localised energy +
+

7N, w.r.t. the scale ratio
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Russian dolls... and multiplicative

YAYAY) Cascades

Ecole des Ponts

o7

"CASCADE
LEVELS

Polarimetric radar observations of heavy rainfalls over Paris
region during 2016 spring (250 m resolution):

- heaviest rain cells are much smaller than moderate ones
- true for their dimensions => multifractal field g

- complex dynamics of their aggregation into a large front

multiplication by 4
independent random
(multiplicative)
increments

multiplication by 16
independent random
(multiplicative)
increments




Van der Hoven
wind (integrated) spectrum (1957)
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Fig. 3 Sprcirum of the horiconLal

wind veloeity, After Van der Hoven®® Some experimental poiow ace shown on the graph;
see reference 26, '

various measurement devices

Richardson cascade is split into macro, meso, micro oscillations...
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PhySical scales Isotropic Euclidean scales

vs. Euclidean scales
(e.g. 23/9-D atmospheric turbulence)

- stratification
- flattening of structures at larger
scales
« “pancake turbulence”

[y = (5 [P/ 7e) 7
p 1 (/ Anisotropic physical scales
¢+ Bolgiano-
exemple: [ty
Kolmogo r'ov/""f:\““ . H,=5/9

H=(1,1,H.); p=2

Sphero-scale



EU-INT WAUDIT research project

Wind Turbulence: Scales, Intermittency & Extreme events

1[s] ~10

Rl T -8 —6 —4 -2 0 2 4 6
Au(r)/o

Figure 1.2: Same distribution as in figure 1.1 but with a logarithmic vertical axis and for
LlC —_ ( t + T ) — ( t) 9 increasing time-scales: 7 = 0.1, 0.4, 1.6, 6.4 seconds.




Experimental Data

Growian experiment (Germany):
Flat, coastal terrain
Two 150m masts

Data:
- Wind speed / direction (propeller)
@ 10, 50, 75, 100, 125 and 150m
- Temperature:
@ 10, 50, 100 and 150m

2.5Hz / 20 min
300 measuring runs
131 validated runs
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Experimental Data

Corsica experiment:
Mountainous, coastal terrain
One 43m mast

Data:
- Wind speed (sonic)
@ 22, 23 and 43m
- Temperature:
@ 22, 23 and 43m

10Hz / 16h
180 measuring runs
161 validated runs
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Spectral Analysis

Growian data Corsica data
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»The combination of processes results in a scaling,
statistical anisotropy.
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Rotated Vectors’ Energy Spectra

uy(w)[* = Eo(w) = cos®(¢) Eo(w) + sin(8) B o (w) — sin(26) Buu(w).

Inverse of the usual procedure ! /-~-\

Rotated time-dependent

u-component (Fourier space):

-

uy(w) = cos(¢)ii(w) — sin(@)d(w).
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Scaling Anisotropy (Corsica)

Scaling appears 0
isotropic (with H < 1/3) 3
on ensemble averaged s \
spectra g

25
Component-wise b =
anisotropic for individual logy O
samples |

Ensemble averaging the spectra results
iIn @ more isotropic rho function

270

»When the temperature is an active
scalar i.e. AH > 0, over larger scales
(> 10 seconds) wind scaling

anisotropy entails |
14




Scaling Anisotropy (Growian)

C
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|sotropic homogeneous
H=1/3

Empirical anisotropy
H,and H,

Rotation with height of
the point of statistical
isotropy (Hu = Hy)

»Scaling behaviour appears — x0/” N\w 20/ N\
to be more complex over flat 3”( & )“" '”"( )"“

terrain 240 \_—/ 120 210 \~_/ 190
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Scaling Anisotropy In The Wake

Analyses in the wake of the wind
turbine yield four leaved structures
(flowers) on individual fields i.e.

highly anisotropic

These flowers can be constructed by
using a correlation coefficient, r > 1.
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Scale symmetries

Cascade paradigm
>does not need to assume isotropy
>but may lead to other non-trivial symmetries

The theoretical aspects were raised or supported by many
empirical studies and have many consequences:

>our overall understanding of Turbulence & Geophysics
>vast projects:

v space-time processes, vector fields
v deterministic / stochastic
v data treatment

17



2+Hz-dimensional vorticity equation
(0<H,<1)
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Stratified atmosphere:
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Strong interactions between local generalized scales,
= strongly non local (Euclidean) scales !

- adifficulty for direct numerical simulations ?

- easy for stochastic simulations !
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initial rotation along the main axis

wobble & gimbal lock

initial rotation along the medium axis
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3D Scaling Gyroscope Cascade
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Figures 72 Comnprarison of Moctatiors: Ga) atrmospbweric turkolenc: an 100m (Fiviog, 201 3] and (b) SEC simulkiion
forn o (Chlgirinskoya and Schertzer. 1990), both display somehow <imillar strong Intsrmittency.

Local flux of energy:
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Mr Jourdain and Lie cascades

What is general and theoretically straightforwara:
» exp: Lae algebra —— Lie group

scalar valued cascade: R9--> R+

* Lie group: smooth manifold

* Lie algebra: tangent space to the
group at the identity

* therefore a vector space with a skew
product that satisfy the Jacobi
identity:

[Xv [Y7 Z]] + [Yv [ZvX]] + [Za [Xv Y]] =0

exemple: commutator of matrices

X, Y| =XY -YX (X, Y] =0=exp(X +Y) =exp(X)exp(Y)
21



Mr Jourdain and Lie cascades

 Levi decomposition of any Lie algebra into its radical
(good guys!) and a semi-simple subalgebra (bad guys!),
e.g..

[(2,R) = R1&, sl(2,R)
What is trickier:
* large number of degrees of freedom (dim?)
* log divergence with the resolution
* universality:
[ evy multivariates, unlike Gaussian mutivariates, are
non parametric (*)
e asymmetry of Levy noises to have convergent statistics,

e.g.:

Vn e N,VX >0: exp(X) > X"/n!

(S&L, 95, T&S 96)

(*) limitation of anamorphosis transform and/or geostatistics 9



Clifford algebra

PP - An important family of Lie algebras:
FurisTech — dimension: 2n
— generalises real numbers R (n=0), complex
numbers C (n=1), quaternions H (n=2) and other
hyper-complex numbers, external algebras and
more!
« Clp,q generated by operators e’ that anti-commute
and square to plus or minus the identity:

Mandelbrot set in hyperbolic

geometry, S&T,2018 6Z€] — _6.] 6Z (Z # J) (62)2 — :I:].

- hence a quadratic form Q, of signature (o,q, p+qg=n):

v? = Q)1 Q(v) =vi +vs.. + vg — ng — 2)22)+2.. — v§+q

ex.. R=Cloo; C=Clo1; H=Cly> 4‘
H'=/(2, R)= Cho-CGR1 “pseudo-/split quaternions”



Clifford algebra

Clifford algebra are
- graded algebra (see figure)
- double algebra:
« 2 multiplications
got super algebra (!):

ClL(V,Q) =Cl°(V,Q) ® Cl*(V,Q)
for real algebra:
Cly (R) = Cly q—1(R) for ¢ >0
Cly (R) = Clyp-1(R) for p >0

- RCCCHCO
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What can we learn from pseudo-quaternions?
G=dl +el+ fJ+ cK;

o) e
B

2 = |J,K|, 2J=|I,K|, 2K=|JI

2D linear Lie algebra /(2, R):

(-
|

J

anti-commutators:

{I,J}={J, K} ={K,I} =0

=-K*=1JK

|
p—t
|
~
(\V)
|
|
<
(\V)
|
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Fractionnaly Integrated Flux
model (FIF, vector version)

FIF assumes that both the renomalized complex FIF simulation of a 2D
G _ cut of wind and its vorticity (color)
propagator GG r and force fr are known:

=1

—1, . A AN ) bt
Grp *u=[R Fraaanns i
T
—— T
-1 is a fractionnal ; ; } ; i A i .
R differential operator .| } !} | \ ] * | b
results from a : XXX N Bt
E continuous, vector, TR §§ \ ; ; N
T . N \ . i\ ‘ -
multiplicative cascade | * ‘\\E.‘\\ q AN
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Fractionnaly Integrated Flux
model (FIF, vector version)

3D FIF wind simulation based
on quaternions

ti=1

FIF assumes that both the renomalized
propagator GG r and force fr are known:

G;l*u:f}g

a

where: fR — £
IS a fractionnal

—1
differential operator

results from a

E continuous, vector,
multiplicative cascade

(Lie cascade)




Surface layer complexity!
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Art piece ‘Windswept’ (Ch. Sowers, 2012): 612 freely | : :: ‘Q N ;\ R‘ Lo ; ; L
rotating wind direction indicators to help a large SRR e ST L S

public to understand the complexity of environment

near the Earth surface Multifractal FIF simulation (S et al., 2013) of a 2D+1 cut of

wind and its vorticity (color). This stochastic model has only a
few parameters that are physically meaningful.

Both movies illustrate the challenge of the near surface wind that plays a key role in the
heterogeneity of the precipitations... and wind energy!
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S&T, Earth& Space, 2020

I Ch 2015, S&al. ACP, 2012,
Conclusions Chaos 2015, S5
Fitton&al., JMI 2013
_—

- Intermittency: a key issue in geophysics and a major

breakthrough with multifractals in the 1980’s: —
« infinite hierarchy of fractal supports of the field singularities and cu;i.a.; |
« anisotropy: 2-D and 3-D turbulence are not the main options |———
(2+Hz)-D atmospheric turbulence (0sHz<1), with a % pee—
theoretical Hz=5/9 resulting from strongly nonlocal
interactions: classical; -
* Not limited to scalar fields /\
* Lie cascades: exponentiation from a stochastic' -~ Mo
algebra to its Lie group of transformations . IRE
« Clifford algebra Clp,q mentioned at once.. /

* now used for vector fields |
* => physically meaningful and convenient to understand, analyse

and simulate intermittent vector fields, more generally
multidimensional systems.
=> from field physics to singularity physics 29



