Multi-Scale Simulation

To go further

  • Risken, H. (1989). The Fokker-Planck Equation. Methods of Solution and Applications, vol. 18 of. Springer Series in Synergetics.

  • Schmitt F. G. et Y. Huang, Analysis and simulation of multifractal random walks, 23rd European Signal Processing Conference, EUSIPCO, 2015, pp. 1018-1022. ISBN 978-0-9928626-3-3/15/$31.00.

  • Perpete, N. and F.G. Schmitt: A discrete log-normal process to generate a sequential multifractal time series, Journal of Statistical Mechanics, Theory and Experiments, P12013, 2011

  • Lovejoy, S., D. Schertzer, 2010: On the simulation of continuous in scale universal multifractals, part I: spatially continuous processes, Computers and Geoscience, 36, 1393-1403, 10.1016/j.cageo.2010.04.010.

  • Lovejoy, S., D. Schertzer, 2010: On the simulation of Continuous in scale universal multifractals, part II: space-time processes and finite size corrections, Computers and Geoscience, 36, 1404-1413, 10.1016/j.cageo.2010.07.001.

  • Lovejoy, S., D. Schertzer, 2013: The weather and Climate: emergent laws and multifractal cascades, 496pp, Cambridge U. Press

PreviousPreviousNextNext
HomepageHomepagePrintPrintCreated with Scenari (new window)